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Abstract—Traceability recovery allows developers to extract 
and comprehend the trace links among software artifacts (e.g., 
requirements and code). These trace links can provide important 
support to software maintenance and evolution tasks. Information 
Retrieval (IR) is now widely accepted as the key technique of semi-
automatic tools to recover candidate trace links based on textual 
similarities among artifacts. However, the vocabulary mismatch 
problem between different artifacts hinders the performance of 
these IR-based approaches. Thus, a growing body of enhancing 
strategies were proposed based on user feedback. They allow to 
adjust the textual similarities of candidate links after users accept 
or reject part of these links. Recently, several approaches 
successfully used this strategy to improve the performance of IR-
based traceability recovery. However, these approaches require a 
large amount of user feedback, which is infeasible in practice. In 
this paper, we propose to improve IR-based traceability recovery 
by introducing only a small amount of user feedback into the 
closeness analysis on call and data dependencies in code. 
Specifically, our approach iteratively asks users to verify a chosen 
candidate link based on the quantified functional similarity for 
each code dependency (called closeness) and the generated IR 
values. The verified link is then used as the input to re-rank the 
unverified candidate links. An empirical evaluation based on five 
real-world systems shows that our approach can outperform four 
baseline approaches by using only a small amount of user feedback. 

Keywords—traceability recovery, information retrieval, 
closeness analysis, user feedback, code dependencies 

I. INTRODUCTION 

Software traceability is known as “the ability to interrelate 
any uniquely identifiable software engineering artifact to any 
other, maintain required links over time, and use the resulting 
network to answer questions of both the software product and its 
development process” [1]. These trace links (a.k.a. traces) can 
help stakeholders in development-related tasks, such as software 
maintenance and evolution. Recent work [2] showed that 
software quality is strongly affected by the completeness of 
software traceability. Another study [3] reported that subjects 
with correct and complete requirements-to-code traces can 
perform maintenance tasks on average 24% faster and created 
on average 50% more correct solutions as compared to the 
others without the traces. However, existing work also reported 

that high-quality traces are difficult to obtain [36] due to the 
large number of required traces, frequent changes in software 
artifacts such as code, and the informal nature of requirements. 

Aiming at providing semi-automated tools to reduce the 
manual efforts, Information Retrieval (IR) is now the most 
widely accepted and applied technique in the research of 
traceability recovery [4-20]. In general, an IR-based recovery 
approach computes the textual similarity between two software 
artifacts through IR models, such as Vector Space Model (VSM) 
[4], Latent Semantic Indexing (LSI) [5], and the probabilistic 
Jensen and Shannon model (JS) [6]. Users then verify candidate 
traces along the automatically generated candidate lists sorted 
by IR values in descending order, instead of exploring all 
possible traces between any two given artifacts. Unfortunately, 
the accuracy of the IR-based approaches, i.e., the rankings of 
relevant traces in the candidate lists, remains unsatisfying to 
fully support the traceability recovery process. The reason is that 
different artifacts, such as requirements and code, often use 
different terms to denote the same concept. To address this so-
called vocabulary mismatch problem for IR-based traceability 
recovery, researchers proposed many enhancing strategies from 
different perspectives, such as enhancing the lexical analyses [7, 
8, 20], or combining with the code dependency analysis [9, 10]. 

Meanwhile, focusing on the semi-automatic nature of IR-
based traceability recovery, a different body of enhancing 
strategies [11-14] are proposed based on the verified results of 
the candidate links by the users (either as relevant links or as 
false positives). This user feedback indicates users’ judgements 
on whether the calculated IR values correctly reflect the actual 
trace links. Thus, when users start to verify an IR candidate list, 
their feedback on verified links can then be used to improve the 
ranking of the remaining list. Hayes et al. [11] proposed a 
pioneer approach that asks users to iteratively verify candidate 
links and uses the standard Rocchio algorithm [21] to modify the 
weights of the terms in requirements and code based on user 
feedback. However, follow-on work [12] demonstrated that 
improvements brought by the previously discussed approach are 
both limited and not always evident. To address this issue, 
Panichella et al. [14] proposed an adaptive version of the 
Rocchio algorithm that considers both the numbers of terms in 
software artifacts and the previously verified links. Meanwhile, 



instead of using user feedback in term re-weighting, Panichella 
et al. [13] proposed to iteratively use user-verified links as the 
input of their code dependency analysis to bonus the calculated 
IR values between requirements and code. However, to achieve 
the best performance of these two approaches (i.e., [13] and 
[14]), the user would have to verify each link in the candidate 
list until the last relevant trace for a given requirement is found. 
This requires great manual efforts in practice due to the low 
ranking of relevant traces and the large number of links in the 
candidate lists generated by IR techniques. Furthermore, the 
users will get tired when they discarded too many false positives 
during the verification process on the candidate lists [12]. 

To improve IR-based traceability recovery based on a small 
amount of user feedback, in this paper we propose an IR-based 
approach that combines user feedback with the closeness 
analysis on code dependencies. Closeness is a code measure 
(proposed by Kuang et al. [10]) that quantifies the degree of 
interaction based on direct (e.g., method calls, inheritance, and 
class usage) and indirect (e.g., reading or writing the same data) 
code dependencies among classes. We first use closeness to 
build separate regions in which code classes closely interact with 
each other based on their code dependencies. We argue that each 
region (named as candidate region) implicitly represents one 
unique part of the system functionalities. Thus, our approach is 
based on the assumption that when the user is verifying the IR 
candidate lists, if one or more classes from a candidate region 
are verified as relevant to a given requirement, other classes in 
the region are also likely to be traced to the same requirement. 

In particular, our approach first uses IR techniques to 
generate ranked lists of candidate links between requirements 
and classes in code. Our approach then improves the ranking of 
the candidate list for each requirement in two steps: (1) it locates 
a small set of candidate regions and ask users to verify whether 
one or more classes that have high IR values in the region are 
relevant to the given requirement; (2) based on each verification  
result (relevant or irrelevant), our approach then either promote 
or demote the unverified links in which the classes have a 
composed high closeness measures to the class in the verified 
link. Eventually, the ranking of candidate lists is improved 
according to the composition of IR value, user feedback, and 
closeness measure. We evaluated our approach on five real-
world systems and found that our approach statistically 
outperforms the pure IR-based approaches and four other 
baseline approaches [10, 13, 14] based on three mainstream IR 
models (VSM, JS, and LSI). The evaluation also showed that the 
improvements of our approach only require users to verify in 
average 6.33 classes for each requirement (from 1.45% to 6.84% 
of all code classes for the five evaluated systems). 

The contribution of this paper is combining closeness 
analysis on call and data dependencies with user feedback to 
improve IR-based requirements-to-code traceability recovery. 
This work mainly targets functional requirements. We name our 
approach as CLUSTER (CLoseness-and-USer-feedback-based 
TracEability Recovery). CLUSTER contains two novel features: 
(1) we build candidate regions of classes based on the closeness 
measure to represent one implicit aspect of the system 
functionalities; (2) we improve the accuracy of IR-based 
traceability recovery based on a small amount of user feedback 
and closeness analysis to re-rank IR candidate lists. 

The rest of this paper is structured as follows. Section II 
discusses the research background and related work. Section III 
presents our approach. Section IV introduces the experiment and 
research question. Section V answers the research questions 
based on the experiment results. Section VI discusses possible 
threats. Section VII makes conclusions and refers to future work. 

II. BACKGROUND AND RELATED WORK 

The focus of ongoing traceability researches [7-20] is to 
enhance the performance of IR techniques when tracing between 
source and target artifacts (e.g., requirements and code) to 
handle the vocabulary mismatch problem. Various enhancing 
strategies have been proposed from different perspectives, such 
as incorporating with execution tracing [18, 19], enhancing the 
advanced lexical analysis [7, 8, 20], combining with code 
dependency analysis [9, 10, 13], and using user feedback [11-
17]. Specifically, Poshyvanyk et al. [18] proposed an affine 
transformation to combine execution tracing with IR technique 
in their feature location approach called PROMESIR. Dit et al. 
[19] further improved PROMESIR by defining a data fusion 
model that integrates IR, execution tracing, and web mining 
algorithms. From the advance lexical analysis perspective, 
Cleland-Huang et al. [7] proposed to introduce extra texts and to 
exclude keywords promoting wrongly retrieved traces when 
tracing requirements to code. Gethers et al. [8] used relational 
topic modeling to complement IR-based traceability recovery. 
De Lucia et al. [20] proposed to use smoothing filters to reduce 
the effect of textual noises in software artifacts for IR techniques. 
However, the use of advanced lexical analyses requires rich 
descriptions and documentations on both requirements and code. 
Unfortunately, in practice this is not always the case. 

A different body of work focuses on code dependencies, 
which are the unique structural information of code, to improve 
IR-based traceability recovery [9, 10,13]. These approaches face 
two challenges: (1) code dependencies are not equally important 
to improve IR-based approaches; (2) incorrect links brought by 
IR techniques can even undermine the improvement [9]. To 
address the first issue, Kuang et al. [10] proposed the closeness 
measure to quantify the functional similarity for each call and 
data dependency and then use this measure to improve IR-based 
traceability recovery [10] and identifying outdated requirement 
[24]. Their work is based on two findings: (1) requirements are 
implemented in connected areas of code [22]; (2) call and data 
dependencies are complementary in understanding requirements 
traceability [23]. This idea of identifying code elements with 
strong connections is also used in mining design templates [40]. 
However, their approach [10] only uses the top-ranked class in 
the candidate list for each requirement as the input. This limits 
the effects of the proposed closeness analysis. To address the 
second issue, Panichella et al. [13] combined the code 
dependency analysis with user feedback. This approach first 
asks users to iteratively each candidate link. It then bonuses IR 
values of the unverified candidate links if they contain classes 
that can connect to the verified classes through direct code 
dependencies (i.e., calling relationship, class inheritance, and 
class usage). The ranking for each unverified candidate link in 
the remaining list will be changed accordingly after each 
verification. However, to achieve the best performance, this 
approach has to ask the user to verify all links in the candidate 
list until the last relevant trace for a given requirement is found. 



User feedback on IR candidate lists is also an important 
perspective to improve IR-based traceability recovery [11-17]. 
In general, one kind of these approaches [15-17] uses a subset 
of relevant traces verified by the user as a training set, while the 
other kind [11-14] asks the user to iteratively verify each 
candidate link and returns this information to the approaches. 
Specifically, Antoniol et al. [15] used the training set as the input 
of a Bayesian Classifier to improve IR-based approaches. Di 
Penta et al. [16] also used this approach to recover traceability 
links between code and documents in systems with many COTS 
and middleware components. Recently, Guo et al. [17] proposed 
a neural network that uses word embedding and RNN with GRU 
to recover requirements-to-code traces by mining a training set 
of traces. The accuracy of this approach can be 41% and 32% 
higher than the pure IR-based approaches using VSM and LSI, 
respectively. However, this improvement needs 55% of verified 
traces for training and development [16]. This is infeasible in the 
recovery scenario because trace links are usually recovered from 
scratch. Meanwhile, Hayes et al. [11] proposed to ask users to 
iteratively verify each candidate link, rather than prepare a 
training set in advance. This approach then applies the feedback 
to the standard Rocchio algorithm [21] on VSM to modify the 
weights of the terms in requirements and code. However, 
follow-on work [12] demonstrated that the benefits provided by 
the previous approach are both limited and not always evident. 
As reported by Panichella et al. [14], this issue is caused by the 
fact that the queries (i.e., requirements) can contain more terms 
than the documents (i.e., code text) in IR-based traceability 
recovery. This fact violates the precondition of using the 
Rocchio algorithm, i.e., the queries contain only a few terms 
compared to the size of the documents to retrieve. The authors 
then proposed an adaptive version of the Rocchio algorithm that 
considers both the numbers of terms and the previously verified 
links. However, like the approach proposed by Panichella et al. 
[13] that combine user feedback with code dependency analysis, 
the performance of the adaptive Rocchio algorithm is still highly 
dependent to the number of user-verified candidate links. 

Unlike the discussed IR-based approaches based on user 
feedback and/or code dependency analysis, our approach first 
iteratively locates a small set of candidate links for users to 
verify, based on both IR values and closeness measures. Using 
the verified links as input, our approach then amplifies and 
propagates users’ valuable adjustments to the IR values of 
unverified links through the closeness analysis on code. Thus, 
our approach can improve the accuracy of IR-based traceability 
recovery by requiring only a small amount of user feedback. 

III. PROPOSED APPROACH 

We propose a three-step approach. First, we build a Code 
Dependency with Closeness Graph (CDCGraph) based on 
captured code dependencies with their calculated closeness 
measures (Step 1). Second, we use IR techniques to generate 
candidate links between requirements and classes (Step 2). Third, 
we build candidate regions in the CDCGraph and ask users to 
iteratively verify a small number of representative classes in 
each region for a given requirement, until the users exit the 
verification process; the ranking of IR candidate lists will be 
adjusted according to the verified links  (Step 3). Details of each 
step are explained in the following subsections with a consistent 
excerpt adapted from the Maven system [26]. 

A. Step 1: Building CDCGraph with Calculated Closeness 

In this subsection, we introduce how to capture code 
dependencies and calculate closeness measures (proposed by 
Kuang et al. [10]). We then create a Code Dependency with 
Closeness Graph (CDCGraph) as the basis of our approach. 

1)  Capturing and Organizing Code dependencies among 
classes.  We consider four kinds of dependencies among classes: 
class call dependencies, class inheritance, class usage, and class 
data dependencies. A call dependency from class Ca to class Cb 

means that there is at least one method call from Ca to Cb. A 
class inheritance from class Ca to class Cb means that Ca is 
derived from Cb. A class usage from class Ca to class Cb means 
that Cb is a field of Ca. A class data dependency between two 
classes Ca and Cb exists if two methods Ca.ma and Cb.mb read 
or manipulate the same data. In this paper, we only focus on 
objects shared in program memory during runtime. However, 
this definition can be extended to other data, e.g., stored in the 
file system or database. However, Existing researches [10, 23] 
have shown that, although less obviously visible, class data 
dependencies can complement the first three code dependencies 
in understanding requirements-to-code traceability. 

To capture the discussed four kinds of code dependencies, 
we used a dynamic analysis tool proposed by Kuang et al. [23]. 
This tool uses JVMTI (Java Virtual Machine Tool Interface) to 
capture method-level call and data dependencies. We chose this 
tool because: (1) this tool can capture all four code dependencies 
by running test cases in a single test run and correctly handle 
polymorphism; (2) potentially missed code dependencies caused 
by incomplete testing are tolerable for our approach (see Section 
VI). To be clear, we only keep the data types of shared objects 
to represent data dependencies by aggregating all shared objects 
of the same type. The previous case studies [23] reported that 
the data-type-level data dependencies can convey comparable 
information as object-level ones and save lots of computational 
efforts. The four kinds of class-level code dependencies are then 
derived based on the captured method-level dependencies: (1) 
the class call dependencies are abstracted from method call 
dependencies with the number of distinct method calls having 
the same calling direction; (2) the class data dependencies are 
abstracted from method data dependencies and keep all related 
data types; (3) the class usages are also abstracted from method 
data dependencies; and (4) the class inheritance is retrieved from 
method call dependencies, i.e., the constructor of a derived class 
calling the constructor of its base class. 

By consulting typical IR-based approaches based on code 
dependency analysis (e.g., [10] and [13]), we treat class call 
dependency, class inheritance, and class usage as one kind of 
code dependencies (i.e., direct code dependencies), and class 
data dependencies as a different one. The first three code 
dependencies are combined because they are structurally similar 
(directed links from source classes to sink classes) while the 
class data dependencies are different (undirected links between 
two classes with shared data types). Meanwhile, class call 
dependency, class inheritance, and class usage largely overlap 
with each other, while class data dependency slightly overlaps 
with direct code dependencies (for more details please refer to 
Section VI). Thus, we calculate closeness measures for these 
two kinds of code dependencies separately. 



Figure 1 depicts adapted samples of captured code 
dependencies from the Maven system. In the figure, a direct 
code dependency is represented by a solid line with an arrow and 
is labeled with the number of method calls and/or class usages. 
For example, a direct code dependency from PluginDescrip- 
tor to MojoDescriptor in Figure 1 consists of a class usage 
and a class call dependency. Meanwhile, a class data 
dependency is represented by a dashed line without an arrow and 
is labeled with the number of shared data types. For example in 
Figure 1, PluginDescriptor passes two data types as 
parameters to MojoDescriptor, i.e., Plugin and Compnent- 
Descriptor. Thus, these two classes are also connected by a 
class data dependency based on the shared two data types. 

 
Fig. 1. Samples of captured class call dependencies (solid lines with an arrow) 
and class data dependencies (dashed lines without an arrow) 

2) Closeness for direct code dependencies and class data 
dependencies. For a direct code dependency, it is intuitive that 
if two classes share more distinct method calls and class usages, 
they will interact more closely. Another important factor is the 
sink’s in-degree and source’s out-degree in a direct code 
dependency. The in-degree refers to the number of sources that 
reach the sink and the out-degree refers to the number of sinks 
that are reached by the source. A smaller sink’s in-degree 
indicates that the sink class focuses more on serving the source 
class. A smaller source’s out-degree means that the source class 
relies more on the service provided by the sink class. Thus, the 
ClosenessDC for direct code dependencies is computed as: 

ClosenessDC = 
2 × N

WeightedInDegreeSink + WeightedOutDegreeSource
    (1) 

where N refers to the number of distinct method calls and class 
usages in a given direct code dependency. When counting sink’s 
in-degree and source’s out-degree, the number of method calls 
and class usages from each direct code dependency are used as 
their extra weights. These two variables are denoted as 
WeightedInDegreeSink and WeightedOutDegreeSource in the 
formula, respectively. ClosenessDC is in the range [0, 1]. 

A data dependency exists because two classes share distinct 
data types with each other. We first use a factor named Inverse 
Data Type Frequency (idtf) to weigh the importance of each 
data type (proposed by Kuang et al. [23]). Besides, for a class 
data dependency between classes Ci and Cj, the ratio between 
the number of shared data types in this dependency and the 
number of all data types shared by Ci and Cj (from other data 
dependencies) is also important to calculate its closeness. Thus, 
the ClosenessCD for class data dependencies is computed as: 

𝑖𝑑𝑡𝑓 = log
ே

௡೏೟
     ClosenessCD = 

∑ idtf(x)x∈{DTi∩DTj}

∑ idtf(y)y∈{DTi∪DTj}
 (2) 

where N is the number of all captured class data dependencies 
and ndt is the occurrence of a given data type in all data 

dependencies. DTi ∩ DTj refers to the data types that Ci shares 
with Cj in the data dependency, and DTi∪DTj refers to all data 
types that Ci and Cj access in the entire code. ClosenessCD is in 
the range [0, 1]. The idea of idtf is similar to the key weighing 
factor idf (Inverse Document Frequency) in IR techniques [34]. 
It reflects how a data type is uniquely shared among classes, thus 
indicating the degree of interaction between the two classes 
sharing the type. Moreover, before calculating ClosenessCD, a 
Thresholdidtf is used to ignore data types with low idtf values. If 
all types in a class data dependency are ignored, this dependency 
will be ignored. The reason is that this kind of data dependencies 
weakens the effect of closeness analysis [10] (The threshold 
calibration is discussed in Section IV). 

3) Generating the CDCGraph. We now create a Code 
Dependency with Closeness Graph (CDCGraph) as G=<V, E>. 
Each vertex V represents a class of the code and is annotated 
with the class name. Furthermore, we define two kinds of edges 
E in the graph: EDC representing direct code dependencies and 
ECD representing indirect class data dependencies between two 
classes. Finally, each code dependency is annotated with the 
calculated closeness measure. A derived CDCGraph based on 
the sample code dependencies in Figure 1 is shown in Figure 2. 

 
Fig. 2. Sample CDCGraph with code dependencies annotated by closeness 
and created candidate regions (numbered and surrounded by dashed lines) 

B. Step 2: Generating IR candidate lists 

Our IR technique consists of the following four steps: 
 Creating corpus. Each class in code is extracted into 

one document containing its comments and identifiers 
including class name, method names and field names. For each 
requirement, we extract a document that includes its title and 
content (e.g., preconditions, main-flow, and sub-flows for 
structured use cases or pure text for unstructured requirements). 
 Normalizing corpus. The documents of requirements 

and classes are normalized by standard pre-processing 
techniques for IR including splitting identifiers, special token 
elimination, stemming, and stop word removal. 
 Indexing corpus and computing textual similarity. We 

use tf-idf for corpus indexing and three mainstream IR models 
to compute textual similarity: Vector Space Model (VSM) [4], 
Latent Semantic Indexing (LSI) [5], and the probabilistic 
Jensen and Shannon (JS) model [6]. 
 Generating candidate links. We rank IR candidate lists 

in descending order based on the IR values of candidate links. 

Table I shows a candidate list generated through JS between 
an issue MNG-4194 (“API to safely release of plugin realms”) 
of the Maven system and the twelve classes in Figure 2. The list 
is ranked by initial IR values (“IR1”) in descending order (“N1”). 
An ‘x’ in column “Trace” marks an actual trace for MNG-4194 
existed in the oracle of all traces for Maven. 



C. Step 3: Locating Candiate Links for User Verification to 
Improve the Ranking of Candiate List 

In this step, we first prune the CDCGraph into different 
connected areas as candidate regions. We assume that classes in 
the same region are likely to implement similar functionalities 
of the system. We then ask users to iteratively verify a small 
number of candidate links for each region. The verified links, 
either as relevant traces or false positives, are used to promote 
or demote the IR values of unverified links by analyzing the 
CDCGraph, respectively. Finally, we set up conditions for users 
to exit the verification process. The goal of this step is to guide 
users to verify a small but vital set of candidate links so that we 
can amplify and propagate these frugal but valuable judgements 
from users to improve IR-based traceability recovery.  

1) Locating candidate links for user verification based on 
candidate regions. First, we use two separate thresholds based 
on calculated closeness measures to prune the CDCGraph, i.e, 
ThresholdDC for direct code dependencies and ThresholdCD for 
class data dependencies. After the pruning, we choose the 
created connected areas that contain at least two or more classes 
as candidate regions. For example in Figure 2, we propose a 
ThresholdDC of 0.7 and a ThresholdCD of 0.9 and get four 
candidate regions shown in the figure (annotated with numbers 
1 to 4). Second, for a given requirement, we choose the class 
that has the highest IR value in each region as its representative 
class. We then ask the user to iteratively verify each candidate 
region in descending order based on the IR values between its 
representative class and the given requirement. Specifically, if 
the representative class is verified as traced to the requirement, 
we mark all the other classes in the region as relevant. On the 
other hand, if the representative class is verified as not traced, 
We ask the user to further verify whether the other classes in 
the same region are traced to the requirement according to their 
IR values in descending order. Once another class is verified as 
not traced, we mark all remaining unverified classes in the 
region as irrelevant. Whenever a class in the region is verified 
or marked, the relevant class is used to give bonuses to the IR 
value of unverified links, while the irrelevant class is used to 
give penalties. All IR values will be updated in each iteration of 
user verification. Thus, the ranking of unverified candidate 
regions will also be updated before the user starts to verify the 
next candidate region. How to give bonuses or penalties will be 

discussed in the next sub-step. The idea of this sub-step is 
similar to the double-elimination tournament. The reason is that 
the IR values cannot guarantee to reflect the actual trace link 
between the representative class of a candidate region and a 
requirement. So we give the region a second chance to continue 
user verification on it until another class is verified as irrelevant. 
It is also worth-while noticing that we assume the user to 
always make correct verifications on the IR candidate links. We 
argue that this assumption is reasonable because: (1) it is widely 
used in the research of using user feedback to improve IR-based 
traceability [11-17]; (2) we aim to use only a small amount of 
user feedback to improve IR-based approaches, so we argue 
that the assumption is also viable for our approach in practice.  

2) Adjusting IR Values According to User Feedback. First, 
when a candidate link is verified (by the user) or marked (by 
our approach) as a relevant trace, we use separate strategies on 
two kinds of code dependencies to give bonuses to the IR values 
for each class CUNVER in the unverified links. For direct code 
dependency, we try to find a path from CUNVER to the class CVER 
in the verified or marked link. A valid path can only have one 
direction, meaning CUNVER transitively reaches or is reached by 
CVER. For class data dependency, we consider whether CUNVER 
can directly (non-transitive) connect to CVER.  CUNVER can get 
bonuses according to both kinds of code dependencies. The IR 
value updated with a bonus (IRbonus) for CUNVER is computed as: 

ADJDC =  ෑ ClosenessDC(x)
x∈PATH

 

IRbonus = IRcurrent + IRtop(ADJDC+ ClosenessCD(x))    (3) 
where IRcurrent represents CUNVER’s current IR value, IRtop 
represents the highest IR value between the given requirement 
and all classes, PATH represents the set of direct code 
dependencies in a discovered path between CUNVER and CVER, 
ClosenessDC(x) represents the closeness measure for each direct 
code dependency in the path, and ClosenessCD(x) represents the 
closeness measure of the class data dependency that directly 
connects CUNVER and CVER.  It is possible that there are multiple 
paths between CUNVER and CVER. We only keep the path that can 
maximize ADJDC for each CUNVER in the unverified link. 

Unlike giving bonuses, when a candidate link is verified or 
marked as a false positive, we use a rather conservative way to 
give penalties to the IR values for CUNVER in the unverified links 
by considering the discussed one-direction paths based on direct 
code dependencies only. This is because previous work [13] has 
reported that when using the same bonuses to give penalties 
according to the verified false positives, this enhancing strategy 
based on user feedback was not able to improve IR-based 
traceability recovery. Thus, the IR value updated with a bonus 
(IRpenalty) for CUNVER is computed as: 

IRpenalty = IRcurrent (1 - IRtop × ADJ
DC

)             (4) 

where IRcurrent represents CUNVER’s current IR value, IRtop 
represents the highest IR value between the given requirement 
and all classes, and ADJDC is defined in Formula (3). The entire 
process of Step 3 is descripted in Algorithm 1, where list 
represents the candidate list for a given requirement req. For 
example, when the user starts to verify the initial candidate list 

TABLE I. A CANDIDATE LIST BETWEEN REQUIREMENT MNG-4194 AND 
TWELVE CLASSES IN MAVEN AFTER STEP 2 (N1, IR1) AND STEP 3 (N2, IR2) 

N1 Class IR1 Trace IR2 N2 
1 PluginRealmCache  0.298 x 0.298 1 
2 CacheUtils 0.227 x 0.227 7 
3 PluginDescriptor 0.113 x 0.284 6 
4 DefaultClassRealmManager 0.113 x 0.179 8 
5 Parameter 0.112  0.090 10 
6 ReactorReader 0.054 x 0.298 2 
7 DefaultPluginRealmCache 0.037 x 0.298 3 
8 MojoExecution 0.032  0.029 11 
9 MojoDescriptor 0.026  0.154 9 
10 DefaultPluginDescriptorCache 0.025 x 0.298 4 
11 ArtifactClassRealmConstituent 0. 018 x 0.298 5 
12 PluginDescriptorBuilder 0. 016  0.013 12 



shown in Table I, the top ranked class PluginDescriptor has 
highest IR value is 0.298. Because this class is not in any 
candidate region, our approach asks user to verify CacheUtils 
in Region 1. With a verified relevant trace, our approach uses all 
three classes in Region 1 to give bonuses to other unverified 
classes. Similarly, the user then verifies Region 2 and 3 and 
gives bonuses. However, when MojoDescriptor in Region 4 
is verified as a false positive, other unverified classes received 
penalties (such as Parameter). The reordered candidate list is 
also shown in Table II (i.e., columns “IR2” and “N2”). 

Exiting the user verification. Previous work [12] has 
reported that when met too many false positives, the user of an 
IR-based recovery approach will be exhausted and likely to be 
error-prone during the verification. Thus, we set up a stopping 
criterion that allows users to exit the verification process when 
they meet only five false positives for each requirement. The 
reason for this criterion is trying to use minimum user feedback 
to improve IR-based traceability recovery with the help of 
closeness analysis. However, the user can choose to verify more 
candidate links for better accuracy (discussed in Section V). 

IV. EXPERIMENTAL SETUP 

We now introduce our experimental setup to evaluate our 
approach. Section IV.A introduces the five evaluated systems. 
Section IV.B defines metrics for evaluating the performance of 
our approach and baseline approaches. Section IV.C discusses 
the threshold calibration for our approach. At last, Section IV.D 
discusses our research questions and the design of experiments. 

A. Evaluated Systems 

Our evaluation is based on five real-world software systems: 
iTrust [25], Maven [26], Pig [27], GanttProject[35] and 
Infinispan [33]. We chose these systems because of their 

availability of both requirements specifications with developer 
maintained test cases and their Requirements-to-code Trace 
Matrices (RTM). For GanttProject, high-quality requirements-
to-code traces are gained by recruiting the original developers. 
The RTM of iTrust contains method-level traces maintained by 
original developers and is publicly available [25]. However, the 
RTMs of the other four systems are at class-level. To keep our 
experiment consistent at the same granularity, we propagated the 
method-level traces of iTrust to class-level traces by aggregating 
all traces to methods of a class on the class-level.  

Meanwhile, Maven, Pig, and Infinispan come from the 
dataset named IlmSeven [28]. This dataset consists of seven 
open source software projects that are implemented in Java. By 
analyzing both the issue-tracking tool Jira [29] and GitHub over 
the seven projects, this dataset records a large number of 
development artifacts and links between them, including the 
commit logs and issues. When the text of a commit log contains 
a unique id of an issue, indicating that these code changes are 
committed to address the mentioned issue, we can retrieve actual 
traces created during daily development between the issue and 
the classes modified by this commit (i.e., the changed Java files).  

Furthermore, to make sure that the issues linked with commit 
logs can be treated as meaningful functional requirements (the 
main target of this paper), we use the following five heuristics 
to filter and merge the issues based on the IlmSeven dataset: (1) 
we ignore issues with terms of “testing” or “testcase”; (2) the 
resolution of issues must be “Fixed”; (3) the priority of issues 
must be  “Major” or “Critical”; (4) we merge the issues if each 
two of them have the explicit issue link as “part-of”; (5) we only 
keep issues that have or contain (for the merged issues) the issue 
types as “New feature” (or “Feature request”). The reason for 
the last two heuristics is that contributors of an open source 
project usually start a “New feature” issue to apply for a new 
system functionality and then improve the implementation of 
this functionality through “Improvement”, “Bug”, or even “New 
feature” issues gradually. Meanwhile, we capture high-quality 
call and data dependencies by using the dynamic analysis tool 
[23] during the running of the sample systems (for Maven and 
Infinispan) or the test cases (for iTrust, GanttProject, and Pig) 
maintained by original developers. We randomly inspected 
about 15% of both the filtered and merged issues and the 
captured code dependencies for each evaluated system. We 
found no contradictories in either the organized issues or the 
code dependencies. Unfortunately, because collecting code 
dependencies and preparing linked issues with an acceptable 
quality requires manual efforts, at this moment we can only 

Algorithm 1 Improving the Ranking of IR Candidate List for 
each Requirement (req, list, ThresholdDC, ThresholdCD) 

1: regions <- CDCGraph.prune (ThresholdDC, ThresholdCD); 
2: while not (stopping criterion) do 
3:     regiontop <- regions.getTopRegion (list, req);  

  4:     classmaxIR <- Regiontop.getMaxIRClass(req); 
5:     The user verifies the link (req, classmaxIR) 
6:     if (req, classmaxIR) is a relevant trace then   
7:          foreach class in regiontop do 

  8:      giveBonusToUnverifiedLink (class, list);   
  9:          end foreach 
10:     else 
11:          givePenaltyToUnverifiedLink (classmaxIR, list); 
12:          Hide classmaxIR from regiontop 

13:          classmaxIR <- regiontop.getMaxIRClass(req); 
14:          while (req, classmaxIR) is a relevant trace do 
15:                 giveBonusToUnverifiedLink (classmaxIR, list); 
16:                 Hide classmaxIR from regiontop 

17:                 classmaxIR <- regiontop.getMaxIRClass(req); 

18:          end while 
19:          foreach class in regiontop.remainingClasses() do  
20:                givePenaltyToUnverifiedLink (class, list); 
21:          end foreach 
22:     end if 
23:     Hide regiontop from regions 
24:     Hide verified links and reorder list 
25: end while 

TABLE II. OVERVIEW OF THE FIVE EVALUATED SYSTEMS 

# 
iTrust 
[25] 

Maven 
[26] 

Pig 
[27] 

Infinispan 
[33] 

GanttPro- 
ject[35] 

Version 13.0 3.5.2 0.17.0 9.2.0 2.0.9 
Programming language Java Java Java Java Java 

KLoC 43 101 365 521 45 
Executed classes  138 94 236 388 124 

Evaluated requirements  34 36 68 237 16 
Ave. number of classes 

tracing to a requirement 
8 

(1-17) 
4 

(1-18) 
5 

(1-38) 
6 

(1-79) 
20 

(4-38) 
Direct code dependencies 274 182 1998 2126 617 
Class data dependencies 4792 1812 5405 6076 1788 
Relevant Traces in RTM 255 155 356 1515 315 

 



perform our experiments on Maven, Pig, and Infinispan from the 
IlmSeven data set. We are currently working on using the other 
four systems to further evaluate our approach. Table II lists basic 
information about the five evaluated systems. The entire dataset 
is open at: https://dataverse.harvard.edu/dataverse/CLUSTER. 

B. Metrics 

We first leveraged two well-known metrics for our 
evaluation, i.e., recall and precision: 

  recall = 
|relevant ∩ retrieved|

|relevant|
%   precision = 

|relevant ∩ retrieved|

|retrieved|
%  (5) 

where relevant is the set of relevant links and retrieved is the 
set of all links retrieved by traceability recovery approaches.  

A common way to evaluate the accuracy of IR techniques is 
to compare the precision values obtained at different recall 
levels, resulting in a set of precision-recall points displayed as 
curves. We then leveraged the following two metrics: average 
precision (AP) and mean average precision (MAP). These two 
metrics are widely used to evaluate IR-based approaches for 
traceability recovery. AP and MAP are computed as: 

𝐴𝑃 = 
∑ (Precision(r)  ×  isRelevant(r))N

r = 1

|RelevantDocuments|
 𝑀𝐴𝑃 = 

 ∑ AP(q)
Q
q = 1

Q
    (6) 

where r is the rank of the target artifact in an ordered list of links, 
Precision(r) represents its precision value, isRelevant() is a 
binary function assigned 1 if the link is relevant or 0 otherwise, 
N is the number of all documents, q is a single query, and Q is 
the number of all queries. AP measures how well relevant 
documents of all queries (requirements) are ranked to the top of 
the retrieved links. Meanwhile, MAP uses the average of the AP 
scores of all queries to measure how well relevant documents 
for each query are ranked to the top of the retrieved links.  

C. Threshold Calibration 

We need to calibrate four thresholds for our approach: 
Thresholdidtf, ThresholdDC, ThresholdCD, and the k value for LSI. 
According to the previous case studies [10, 23], we used a 
Thresholdidtf of 1.4 to ignore data types with small idtf value 
(discussed in Section III.B). We then follow the same process 
proposed by Kuang et al. [10] to calibrate both ThresholdDC and 
ThresholdCD. We first used the 3σ criterion to filter out outliers 
(closeness measure three times higher or lower than the standard 
deviation σ) from the set of ClosenessDC. We then rescaled 
closeness measures into [0, 1] by min-max normalization. 
Filtered abnormally high closeness measures were set to 1 and 
abnormally low closeness measures were set to 0 in the rescaled 
range. We used the same process to calibrate ThresholdCD. The 
two processes led to a ThresholdDC of 0.7 and a ThresholdCD of 
0.9 (the same two thresholds used in the previous work [10]) 
based on our experiment results. These two thresholds are only 
used to build candidate regions for all evaluated systems, we still 
use the original closeness measures for Algorithm 1. For the k 
value of the LSI method, we found that k = 85 provided the best 
accuracy for iTrust, Maven, and GanttProject, while for Pig and 
Infinispan k = 220 is the best. The two separate LSI k values are 
necessary because the number of executed classes of iTrust, 
Maven, and GanttProject are 138, 94, and 124 while the executed 
classes for Pig and Infinispan are 236 and 388, respectively. We 
use the same four thresholds for all systems to avoid biases. For 
new systems we suggest using the same calibration process 
before fine-tuning them to optimize the performance. 

D. Research Questions 

In this paper, we aim to study whether the combination of a 
small amount of user feedback and the closeness analysis on 
code dependencies is able to improve IR-based traceability 
recovery. Thus, we formulated our research question as follows: 

Can our approach outperform baseline approaches for IR-
based traceability recovery? 

To study the RQ, we use the following four baseline 
approaches: (1) the pure IR-based approach (IR-ONLY); (2) the 
approach combining code dependency analysis with user 
feedback: User-Driven Combination of Structural and Textual 
Information (UD-CSTI [13]); (3) the approach using closeness 
analysis on code only: Traceability Recovery by Information 
retrieval and ClosEness analysis (TRICE [10]); and (4) the 
approach using an adaptive version of the Rocchio Algorithm: 
Adaptive Relevance Feedback (ARF [14]). Our approach is 
named as CLUSTER. We planned to use three mainstream IR 
models, i.e., VSM, LSI, and JS, to compare CLUSTER with the 
four baseline approaches. However, ARF is proposed on VSM 
because the Rocchio Algorithm works on the text vectors [21]. 
Furthermore, applying the Rocchio Algorithm to LSI or JS is 
not trivial. Specifically, De Lucia et al. [12] used the Rocchio 
algorithm before and after LSI, i.e., decomposing the term-by-
document matrix, while Salton and Buckley [37] reported that 
the Rocchio Algorithm is not as competitive on the probabilistic 
model as on VSM. Since the main focus of this paper is not to 
optimize ARF on LSI and JS, to avoid any biases, we only 
compare CLUSTER with ARF through VSM. For the other 
three baselines, the comparison with CLUSTER is based on all 
three IR models. To find out whether CLUSTER is able to 
improve IR-based traceability recovery with a small amount of 
user feedback, for UD-CSTI and ARF we make all candidate 
links  to be verified by users to reach the best performance of 
the two approaches (default settings according to related papers [13, 
14]), while CLUSTER still use the stopping criterion that the 
verification stops when five false positives are met. Based on this 
comparison, we expect to find out whether a small amount of user 
feedback with the help of closeness analysis on code can reach 
or even exceed the improvement brought by verifying the entire 
candidate lists. Because we assume that the user always makes 
correct verifications (discussed in Section III.D), we simulate 
this verification process by referring to the known RTM of the 
evaluated systems for CLUSTER, UD-CSTI and ARF. 

Besides the proposed metrics in Section IV.B, we used a 
statistical significance test to check whether the performance of 
CLUSTER is significantly better than the performance of the 
baseline approaches. By consulting the significance test used in 
[10] and [31], we use the F-measure at each recall point as the 
single dependent variable of our study. We use the F-measure 
because we want to know whether CLUSTER improves both 
precision and recall. The F-measure is computed as: 

𝐹 =  
ଶ௉ × R

௉ାோ
        (7) 

where P represents precision and R represents recall and F is the 
harmonic mean of P and R. A higher F-measure means that both 
precision and recall are high. We then use the Wilcoxon rank 
sum test [32] to test the following null hypothesis: 

H0: There is no difference between the performance of 
CLUSTER and baseline approaches 



We use α = 0.05 to accept or refute the null hypothesis. We 
also use a non-parametric effect size measure for ordinal data, 
i.e., Cliff’s d [38], to compute the magnitude of the effect of our 
approach compared to the baseline approaches as follows: 

𝑑 = ቚ 
#(௫భ வ ௫మ) ି #(௫భ ழ ௫మ)

௡భ௡మ
 ቚ        (8) 

where x1 and x2 are F-measure values of CLUSTER and the 
baseline approaches, and n1 and n2 are the sizes of the sample 
groups. The effect size is considered small for d in the range 
[0.15, 0.33), medium for d in the range [0.33, 0.47) and large if 
d equals or is larger than 0.47. 

V. RESULTS AND DISCUSSION 

Table III shows the results of the five evaluated systems 
(rows). For each system and each IR model (columns), we 
compared the performance of four baseline approaches with 
CLUSTER. We leveraged the introduced performance metrics 
AP and MAP (sub column 1 and 2). Sub column 3 shows the p-
value of the F-measure significance test for CLUSTER and sub 
column 4 shows the Cliff’s d. In 48 out of 50 cases, the F-
measure for the results of CLUSTER is significantly higher than 
the F-measure of the compared four baseline approaches (p-
value < 0.05) at each level of recall, indicating that CLUSTER 
significantly outperforms baseline approaches in most cases.  
Specifically, CLUSTER outperforms IR-ONLY, UD-CSTI, and 
TRICE on both AP and MAP in all cases. When compared with 
ARF, CLUSTER performs worse in AP (0.89 on average) but 
outperforms in MAP (4.43 on average). We need to point out 
that the performance of  CLUSTER is achieved by tolerating 
only five candidate links verified as false positives for each 
requirement, while the performance of UD-CSTI and ARF relies 
on all inks in the candidate lists to be verified. In particular, the 
average user-verified links over all requirements for iTrust, 

Maven, Pig, Infinispan, and GanttProject are 6.10, 5.74, 5.72, 
5.62, and 8.48, respectively. The ratio between user-verified 
classes and all classes in the code (i.e., “executed classes” in 
Table II) ranges from 1.45% to 6.84% for each requirement. This 
observation demonstrates that by combining with closeness 
analysis on code dependencies, a small amount of user feedback 
can be amplified and propagated to improve IR-based 
traceability. We argue that this observation is very beneficial to 
our approach for improving IR-based traceability recovery 
because in practice the user feedback can be valuable but frugal.  
Figure 3 shows and compares the precision-recall curves for the 
four approaches grouped by each system and IR model. 

We now use the adapted excerpt from the Maven system 
(discussed in Section III) to demonstrate why CLUSTER is able 
to outperform TRICE and UD-CSTI with a small amount of user 
feedback. As we discussed, TRICE only uses the top-ranked 
class inside a code region from the candidate list for each 
requirement as the input. So according to Figure 2 and Table II, 
TRICE will start its bonusing only from the second-ranked 
CacheUtils which is in the created Region1. So its 
improvement is quite limited. To make things worse, if the initial 
IR values are not reliable, TRICE will give bonuses to candidate 
links that are actually irrelevant to a given requirement and thus 
even decrease its performance. This can be observed from Table 
III and Figure 3 that when the initial IR results are low (e.g., Pig-
VSM), TRICE performs the worst compared to the other four 
approaches. In contrast, CLUSTER uses both the candidate 
region and initial IR values of classes in the region to locate 
candidate links for users to verify. It further asks the user to 
iteratively verify multiple classes from different candidate 
regions. In the Maven sample, Region 1, Region 2 and Region3 
will be verified as relevant regions. So even the class with small 
IR values, such as ArtifactClassRealmConstituent, can 
also get multiple bonuses because it has code dependencies to 

TABLE III.  THE NUMBER OF COMPUTED AP, MAP, P-VALUE, AND CLIFF’S D EVALUATING EACH APPROACH FOR ALL TWENTY EXPERIMENT 
VARIATIONS (EVALUATED SYSTEMS ITRUST, MAVEN,  PIG, GANTTPROJECT, AND INFINISPAN COMBINED WITH IR MODELS VSM, LSI, AND JS) 

 VSM JS LSI 
AP MAP p-value Cliff’s delta AP MAP p-value Cliff’s delta AP MAP p-value Cliff’s delta 

iTrust IR-ONLY 42.55 56.55 <0.01 0.29 38.28 55.99 <0.01 0.31 41.59 54.63 <0.01 0.28 
UD-CSTI 45.75 59.08 <0.01 0.22 43.26 62.99 <0.01 0.19 46.04 58.26 <0.01 0.18 
TRICE 45.12 58.46 <0.01 0.24 44.49 60.77 <0.01 0.19 44.63 56.67 <0.01 0.23 
ARF 44.12 58.35 <0.01 0.31    -    - 
CLUSTER 54.12 65.72 - - 49.08 64.31 - - 51.08 63.07 - - 

Maven IR-ONLY 14.54 29.46 <0.01 0.51 15.86 35.03 <0.01 0.47 14.25 35.13 <0.01 0.44 
UD-CSTI 15.14 30.40 <0.01 0.46 17.95 36.72 <0.01 0.35 15.46 36.65 <0.01 0.32 
TRICE 14.15 29.16 <0.01 0.49 15.62 35.44 <0.01 0.46 14.51 35.52 <0.01 0.39 
ARF 24.25 31.34 0.86 0.01 - - - - - - - - 
CLUSTER 22.96 38.07 - - 23.09 39.74 - - 20.36 39.79 - - 

Pig IR-ONLY 22.05 42.38 <0.01 0.23 15.94 35.65 <0.01 0.25 20.39 41.83 <0.01 0.19 
UD-CSTI 24.25 43.52 <0.01 0.15 19.26 37.92 <0.01 0.15 23.05 42.99 0.03 0.09 
TRICE 16.91 41.75 <0.01 0.26 113.94 36.68 <0.01 0.21 16.08 41.01 <0.01 0.21 
ARF 35.07 44.95 0.56 0.03 - - - - - - - - 
CLUSTER 24.75 45.12 - - 20.34 39.81 - - 22.95 44.38 - - 

Gantt 
Project 

IR-ONLY 43.17 49.79 <0.01 0.39 36.50 46.76 <0.01 0.41 43.94 51.70 <0.01 0.38 
UD-CSTI 47.86 55.66 <0.01 0.24 45.91 58.39 <0.01 0.26 50.23 58.58 <0.01 0.16 
TRICE 46.86 53.81 <0.01 0.32 39.95 49.50 <0.01 0.38 43.39 51.91 <0.01 0.32 
ARF 56.16 60.71 <0.01 0.22 - - - - - - - - 
CLUSTER 55.41 65.46 - - 56.30 63.83 - - 54.39 63.53 - - 

Infinispan IR-ONLY 8.23 23.51 <0.01 0.20 6.43 24.25 <0.01 0.18 8.62 25.00 <0.01 0.22 
UD-CSTI 9.31 24.18 <0.01 0.12 7.80 25.22 0.02 0.05 10.70 26.14 <0.01 0.06 
TRICE 6.65 22.79 <0.01 0.24 5.72 23.82 <0.01 0.18 7.32 23.77 <0.01 0.24 
ARF 13.58 24.75 <0.01 0.14 - - - - - - - - 
CLUSTER 11.47 26.22 - - 9.67 26.87 - - 12.63 28.29 - - 



all relevant regions. Furthermore, the candidate links verified as 
false positives are also used to improve the ranking of candidate 
lists by giving penalties to IR values of unverified links. On the 
other hand, although UD-CSTI is able to eventually bonus all 
relevant classes based on the code dependency analysis without 
making big mistakes, it requires great manual efforts to verify 
lots of candidate links, especially for giving bonuses to the 
relevant class with small IR values. On the contrary, CLUSTER 
is able to amplify user-verified links through the candidate 
regions through the closeness analysis on code dependencies. 

We now focus on comparing the differences between the 
number of false positives made by CLUSTER, IR-ONLY, and 
ARF at different levels of recall for twenty experiment 
variations (shown in Table IV). The sub column 1 (denoted as 
IR-ONLY) shows that CLUSTER is able to bring a large 
reduction of 4250 retrieved false positives at the 80% level of 
recall on Infinispan-LSI. This saves notable efforts to the user 
when using CLUSTER instead of IR-ONLY. Such an 
improvement is particularly evident when the recall is between 
20% and 80%. Furthermore, we compare CLUSTER with ARF 
that uses all verified links as its input (shown in sub column 2, 
denoted as ARF). We found that in the majority of cases, 
CLUSTER is still able to make less false positives compared to 
ARF, especially around recall levels between 40% to 80%. The 
overall observation demonstrates that CLUSTER is useful to 
save great manual efforts for the user who aims to recover 
requirement-to-code traces by IR-based approaches in practice. 
However, we also noticed that ARF is able to achieve good 
precision at the lower level of recall (less than twenty percent). 
It is even more interesting that ARF can perform better on the 
systems with low text quality (e.g., Maven and Pig) instead of 
those with good text quality (e.g., iTrust). The reason might be 
that ARF will not apply its adaptive Rocchio Algorithm unless 
the text length of queries (requirements) is smaller than the text 
length of documents (classes). The use cases in iTrust are well 
documented with text size larger than the code texts in most 

cases. So ARF can hardly be activated when applied to iTrust. 
On contrary, the issue texts in Maven and Pig is short compared 
to their class texts. Thus, ARF is able to adjust the text vectors 
created from these issues multiple times. To further combine our 
approach with ARF is one of our future work. 

We made four additional observations. First, the results of 
CLUSTER can vary with different IR models for the same 
system. The reason is that re-ranking IR candidate lists in 
CLUSTER relies on giving bonuses to generated IR values. 
These values can be very different if they are computed by 
different IR models. Second, we also tried to let all created 
candidate regions verified to optimize CLUSTER. We found 
that for all five systems, the biggest increase of performance can 
be achieved when the user is asked to verify about thirteen 
classes from different candidate regions. So if the user aims to 
recover more relevant traces at a higher level of recall (such as 
60%-80%), we suggest she verify around thirteen classes on 
CLUSTER for a given requirement. Third, the increase of the 
performance brought by CLUSTER is not significant for 
Infinispan and Pig (see related Cliff’s delta in Table III). This is 
probably because the requirements we elicited from the filtered 
and merged issues in IlmSeven dataset are too fine-grained 
compared to the requirements maintained by developers of 
iTrust and GanttProject. This can also be observed from Table 
II where the numbers of average classes that traces to a 
requirement for iTrust and GanttProject are 8 and 12, while for 
Infinispan and Pig the numbers are 6 and 5, respectively. In 
future work we plan to use text clustering techniques to further 
enhance the quality of derived traces from issues linked to 
commit logs, which is relevant to the work proposed by Palomba 
et al. [30]. Fourth, we found that although CLUSTER is built on 
three different perspectives, i.e., textual similarities, code 
structural information, and user feedback, our approach still 
cannot achieve acceptable precision at higher level recall (e.g., 
higher than 80%), even if we use all verified candidate links as 
input on the evaluated systems with good text quality (e.g., 

 

 

 

 
 

Fig. 3. Precision/Recall curves grouped by evaluated systems (iTrust, Maven, Gantt, Infinispan, Pig) and IR models (VSM, LSI, JS) 



iTrust). This situation can also be observed in many IR-based 
traceability recovery approaches [8-16]. We plan to refine 
CLUSTER in future work to help users recover the majority of 
relevant traces by discarding the least false positives. 

VI. THREATS TO VALIDITY 

Internal Threats. A possible threat is the incomplete code 
dependencies due to the incompleteness nature of dynamic 
analysis. However, compared with static analysis, our approach 
prefers concise but correct descriptions of system behavior (e.g., 
to correctly handle polymorphism) to work because CLUSTER 
mainly targets functional requirements. We further tried to 
alleviate this problem by extensively executing the test cases or 
sample systems maintained by original developers. Meanwhile, 
we treat class call dependency, class inheritance, and class usage 
as the same direct code dependencies and we treat class data 
dependency as a different kind based on their structures in the 
CDCGraph (discusses in Section III.A). We further investigated 
how these code dependencies overlap with each other. We found 
that for all evaluated systems the class inheritance and class 
usage are 100% overlapped with class call dependencies. The 
reasons are: (1) for class inheritance, the constructor of a derived 
class will eventually call the constructor of its base class; (2) for 
class usage, a class usually uses the fields of another class 
through the get-set methods unless the fields are publicly visible, 
which is rare in practice. On the contrary, only 3% to 23% of 
class data dependencies overlap with direct code dependencies 
for the evaluated systems, indicating a significant difference. 
Finally, by consulting previous work [11-14, 39], the user 
feedback we used in this paper is simulated by referring to the 
known RTM of the evaluated systems. Evaluating how 
CLUSTER works under real-world user verification process is 
in our future work. 

External Threats. At this moment we only collected code 
dependencies and linked issues with acceptable qualities on 
three out of seven systems in the IlmSeven dataset. However, 
we consider our findings still relevant since we evaluated five 
real-world systems in total that are either widely studied or used 
in practice from different domains (iTrust: J2EE medical care 
system, Maven: project dependency management, Pig: big-data 

processing, Infinispan: distributed in-memory data store, and 
GanttProject: project planning). Furthermore, we combined the 
evaluated systems with three mainstream IR models (i.e., VSM, 
LSI, and JS) to extend our experiments to twenty variations in 
total (e.g., iTrust-VSM and Pig-JS). Meanwhile, because of our 
heuristics to filter and merge issues from the IlmSeven dataset, 
our evaluation is only based on part of RTMs of Maven, Pig, and 
Infinispan. However, we use the same RTMs to compare our 
approach with the baselines for each system, thus making no 
bias. The experiment results of pure IR-based approaches on 
Maven, Pig and Infinispan shows that our heuristics can create 
traces from their issues with acceptable text quality. Finally, we 
re-implemented all baseline approaches because we cannot find 
available implementations. However, all related papers provided 
detailed algorithms and discussions [10, 13, 14] that help us to 
avoid big deviations when re-implementing baseline approaches. 

VII. CONCLUSIONS AND FUTURE WORK 

User feedback on candidate links created by IR technique 
has been used to improve IR-based traceability recovery. 
However, the performance of these approaches is highly 
dependent on the number of user-verified links. Thus, we use the 
closeness measure to quantify the degree of interactions for code 
dependencies. We then proposed an approach that combines the 
closeness analysis with user feedback to improve IR-based 
traceability recovery. An empirical study based on five real-
world systems showed that our approach uses a small amount of 
user feedback to outperform four baselines. Our future work is 
to find out how to guide users to recover most relevant traces 
with least candidate links to be verified when using IR-based 
recovery approaches. The dataset in this paper is now publicly 
available at: https://dataverse.harvard.edu/dataverse/CLUSTER. 
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TABLE IV. REDUCED FALSE POSITIVES AT DIFFERENT LEVELS OF RECALL (CLUSTER COMPARED WITH IR-ONLY AND ARF)  

 Recall (20%) Recall (40%) Recall (60%) Recall (80%) Recall (100%) 
 IR-ONLY ARF IR-ONLY ARF IR-ONLY ARF IR-ONLY ARF IR-ONLY ARF 
 FP FP FP FP FP FP FP FP FP FP 

iTrust 
VSM -6 0 -65 -103 -375 -529 -578 -519 -189 -145 

JS +3 - -123 - -532 - -736 - -257 - 
LSI -7 - -74 - -395 - -419 - -57 - 

Maven 
VSM -233 -62 -504 -110 -646 -3 -822 +385 +60 0 

JS -160 - -483 - -775 - -770 - +5 - 
LSI -115 - -390 - -915 - -705 - -7 - 

Pig 
VSM -29 +64 -409 -173 -1456 -1312 -1393 -661 +208 -6 

JS -145 - -964 - -1164 - -645 - +110 - 
LSI -45 - -493 - -941 - -690 - -118 - 

Gantt 
Project 

VSM -27 +9 -121 -43 -159 -92 -226 -195 -294 -131 
JS -67 - -136 - -178 - -294 - -169 - 

LSI -21 - -93 - -137 - -266 - -109 - 

Infinispan 
VSM -1124 -815 -2641 -2221 -4172 -2472 -4143 -1847 +17 +35 

JS -1556 - -3742 - -3027 - -2295 - -368 - 
LSI -1123 - -3671 - -4241 - -4250 - -2 - 
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