
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Using Frugal User Feedback with Closeness Analysis
on Code to Improve IR-Based Traceability Recovery

Hongyu Kuang
State Key Lab for Novel Software

Technology
Nanjing University

Nanjing, China
khy@nju.edu.cn

Hui Gao
State Key Lab for Novel Software

Technology
Nanjing University

Nanjing, China
ghalexcs@gmail.com

Hao Hu
State Key Lab for Novel Software

Technology
Nanjing University

Nanjing, China
myou@nju.edu.cn

Xiaoxing Ma
State Key Lab for Novel Software

Technology
Nanjing University

Nanjing, China
xxm@nju.edu.cn

Jian Lü
State Key Lab for Novel Software Technology

Nanjing University
Nanjing, China
lj@nju.edu.cn

Patrick Mäder
Fakultät für Informatik und Automatisierung

Technische Universität Ilmenau
Ilmenau, Germany

patrick.maeder@tu-ilmenau.de

Alexander Egyed
Institute for Software Systems Engineering

Johannes Kepler University
Linz, Austria

alexander.egyed@jku.at

Abstract—Traceability recovery allows developers to extract
and comprehend the trace links among software artifacts (e.g.,
requirements and code). These trace links can provide important
support to software maintenance and evolution tasks. Information
Retrieval (IR) is now widely accepted as the key technique of semi-
automatic tools to recover candidate trace links based on textual
similarities among artifacts. However, the vocabulary mismatch
problem between different artifacts hinders the performance of
these IR-based approaches. Thus, a growing body of enhancing
strategies were proposed based on user feedback. They allow to
adjust the textual similarities of candidate links after users accept
or reject part of these links. Recently, several approaches
successfully used this strategy to improve the performance of IR-
based traceability recovery. However, these approaches require a
large amount of user feedback, which is infeasible in practice. In
this paper, we propose to improve IR-based traceability recovery
by introducing only a small amount of user feedback into the
closeness analysis on call and data dependencies in code.
Specifically, our approach iteratively asks users to verify a chosen
candidate link based on the quantified functional similarity for
each code dependency (called closeness) and the generated IR
values. The verified link is then used as the input to re-rank the
unverified candidate links. An empirical evaluation based on five
real-world systems shows that our approach can outperform four
baseline approaches by using only a small amount of user feedback.

Keywords—traceability recovery, information retrieval,
closeness analysis, user feedback, code dependencies

I. INTRODUCTION

Software traceability is known as “the ability to interrelate
any uniquely identifiable software engineering artifact to any
other, maintain required links over time, and use the resulting
network to answer questions of both the software product and its
development process” [1]. These trace links (a.k.a. traces) can
help stakeholders in development-related tasks, such as software
maintenance and evolution. Recent work [2] showed that
software quality is strongly affected by the completeness of
software traceability. Another study [3] reported that subjects
with correct and complete requirements-to-code traces can
perform maintenance tasks on average 24% faster and created
on average 50% more correct solutions as compared to the
others without the traces. However, existing work also reported

that high-quality traces are difficult to obtain [36] due to the
large number of required traces, frequent changes in software
artifacts such as code, and the informal nature of requirements.

Aiming at providing semi-automated tools to reduce the
manual efforts, Information Retrieval (IR) is now the most
widely accepted and applied technique in the research of
traceability recovery [4-20]. In general, an IR-based recovery
approach computes the textual similarity between two software
artifacts through IR models, such as Vector Space Model (VSM)
[4], Latent Semantic Indexing (LSI) [5], and the probabilistic
Jensen and Shannon model (JS) [6]. Users then verify candidate
traces along the automatically generated candidate lists sorted
by IR values in descending order, instead of exploring all
possible traces between any two given artifacts. Unfortunately,
the accuracy of the IR-based approaches, i.e., the rankings of
relevant traces in the candidate lists, remains unsatisfying to
fully support the traceability recovery process. The reason is that
different artifacts, such as requirements and code, often use
different terms to denote the same concept. To address this so-
called vocabulary mismatch problem for IR-based traceability
recovery, researchers proposed many enhancing strategies from
different perspectives, such as enhancing the lexical analyses [7,
8, 20], or combining with the code dependency analysis [9, 10].

Meanwhile, focusing on the semi-automatic nature of IR-
based traceability recovery, a different body of enhancing
strategies [11-14] are proposed based on the verified results of
the candidate links by the users (either as relevant links or as
false positives). This user feedback indicates users’ judgements
on whether the calculated IR values correctly reflect the actual
trace links. Thus, when users start to verify an IR candidate list,
their feedback on verified links can then be used to improve the
ranking of the remaining list. Hayes et al. [11] proposed a
pioneer approach that asks users to iteratively verify candidate
links and uses the standard Rocchio algorithm [21] to modify the
weights of the terms in requirements and code based on user
feedback. However, follow-on work [12] demonstrated that
improvements brought by the previously discussed approach are
both limited and not always evident. To address this issue,
Panichella et al. [14] proposed an adaptive version of the
Rocchio algorithm that considers both the numbers of terms in
software artifacts and the previously verified links. Meanwhile,

instead of using user feedback in term re-weighting, Panichella
et al. [13] proposed to iteratively use user-verified links as the
input of their code dependency analysis to bonus the calculated
IR values between requirements and code. However, to achieve
the best performance of these two approaches (i.e., [13] and
[14]), the user would have to verify each link in the candidate
list until the last relevant trace for a given requirement is found.
This requires great manual efforts in practice due to the low
ranking of relevant traces and the large number of links in the
candidate lists generated by IR techniques. Furthermore, the
users will get tired when they discarded too many false positives
during the verification process on the candidate lists [12].

To improve IR-based traceability recovery based on a small
amount of user feedback, in this paper we propose an IR-based
approach that combines user feedback with the closeness
analysis on code dependencies. Closeness is a code measure
(proposed by Kuang et al. [10]) that quantifies the degree of
interaction based on direct (e.g., method calls, inheritance, and
class usage) and indirect (e.g., reading or writing the same data)
code dependencies among classes. We first use closeness to
build separate regions in which code classes closely interact with
each other based on their code dependencies. We argue that each
region (named as candidate region) implicitly represents one
unique part of the system functionalities. Thus, our approach is
based on the assumption that when the user is verifying the IR
candidate lists, if one or more classes from a candidate region
are verified as relevant to a given requirement, other classes in
the region are also likely to be traced to the same requirement.

In particular, our approach first uses IR techniques to
generate ranked lists of candidate links between requirements
and classes in code. Our approach then improves the ranking of
the candidate list for each requirement in two steps: (1) it locates
a small set of candidate regions and ask users to verify whether
one or more classes that have high IR values in the region are
relevant to the given requirement; (2) based on each verification
result (relevant or irrelevant), our approach then either promote
or demote the unverified links in which the classes have a
composed high closeness measures to the class in the verified
link. Eventually, the ranking of candidate lists is improved
according to the composition of IR value, user feedback, and
closeness measure. We evaluated our approach on five real-
world systems and found that our approach statistically
outperforms the pure IR-based approaches and four other
baseline approaches [10, 13, 14] based on three mainstream IR
models (VSM, JS, and LSI). The evaluation also showed that the
improvements of our approach only require users to verify in
average 6.33 classes for each requirement (from 1.45% to 6.84%
of all code classes for the five evaluated systems).

The contribution of this paper is combining closeness
analysis on call and data dependencies with user feedback to
improve IR-based requirements-to-code traceability recovery.
This work mainly targets functional requirements. We name our
approach as CLUSTER (CLoseness-and-USer-feedback-based
TracEability Recovery). CLUSTER contains two novel features:
(1) we build candidate regions of classes based on the closeness
measure to represent one implicit aspect of the system
functionalities; (2) we improve the accuracy of IR-based
traceability recovery based on a small amount of user feedback
and closeness analysis to re-rank IR candidate lists.

The rest of this paper is structured as follows. Section II
discusses the research background and related work. Section III
presents our approach. Section IV introduces the experiment and
research question. Section V answers the research questions
based on the experiment results. Section VI discusses possible
threats. Section VII makes conclusions and refers to future work.

II. BACKGROUND AND RELATED WORK

The focus of ongoing traceability researches [7-20] is to
enhance the performance of IR techniques when tracing between
source and target artifacts (e.g., requirements and code) to
handle the vocabulary mismatch problem. Various enhancing
strategies have been proposed from different perspectives, such
as incorporating with execution tracing [18, 19], enhancing the
advanced lexical analysis [7, 8, 20], combining with code
dependency analysis [9, 10, 13], and using user feedback [11-
17]. Specifically, Poshyvanyk et al. [18] proposed an affine
transformation to combine execution tracing with IR technique
in their feature location approach called PROMESIR. Dit et al.
[19] further improved PROMESIR by defining a data fusion
model that integrates IR, execution tracing, and web mining
algorithms. From the advance lexical analysis perspective,
Cleland-Huang et al. [7] proposed to introduce extra texts and to
exclude keywords promoting wrongly retrieved traces when
tracing requirements to code. Gethers et al. [8] used relational
topic modeling to complement IR-based traceability recovery.
De Lucia et al. [20] proposed to use smoothing filters to reduce
the effect of textual noises in software artifacts for IR techniques.
However, the use of advanced lexical analyses requires rich
descriptions and documentations on both requirements and code.
Unfortunately, in practice this is not always the case.

A different body of work focuses on code dependencies,
which are the unique structural information of code, to improve
IR-based traceability recovery [9, 10,13]. These approaches face
two challenges: (1) code dependencies are not equally important
to improve IR-based approaches; (2) incorrect links brought by
IR techniques can even undermine the improvement [9]. To
address the first issue, Kuang et al. [10] proposed the closeness
measure to quantify the functional similarity for each call and
data dependency and then use this measure to improve IR-based
traceability recovery [10] and identifying outdated requirement
[24]. Their work is based on two findings: (1) requirements are
implemented in connected areas of code [22]; (2) call and data
dependencies are complementary in understanding requirements
traceability [23]. This idea of identifying code elements with
strong connections is also used in mining design templates [40].
However, their approach [10] only uses the top-ranked class in
the candidate list for each requirement as the input. This limits
the effects of the proposed closeness analysis. To address the
second issue, Panichella et al. [13] combined the code
dependency analysis with user feedback. This approach first
asks users to iteratively each candidate link. It then bonuses IR
values of the unverified candidate links if they contain classes
that can connect to the verified classes through direct code
dependencies (i.e., calling relationship, class inheritance, and
class usage). The ranking for each unverified candidate link in
the remaining list will be changed accordingly after each
verification. However, to achieve the best performance, this
approach has to ask the user to verify all links in the candidate
list until the last relevant trace for a given requirement is found.

User feedback on IR candidate lists is also an important
perspective to improve IR-based traceability recovery [11-17].
In general, one kind of these approaches [15-17] uses a subset
of relevant traces verified by the user as a training set, while the
other kind [11-14] asks the user to iteratively verify each
candidate link and returns this information to the approaches.
Specifically, Antoniol et al. [15] used the training set as the input
of a Bayesian Classifier to improve IR-based approaches. Di
Penta et al. [16] also used this approach to recover traceability
links between code and documents in systems with many COTS
and middleware components. Recently, Guo et al. [17] proposed
a neural network that uses word embedding and RNN with GRU
to recover requirements-to-code traces by mining a training set
of traces. The accuracy of this approach can be 41% and 32%
higher than the pure IR-based approaches using VSM and LSI,
respectively. However, this improvement needs 55% of verified
traces for training and development [16]. This is infeasible in the
recovery scenario because trace links are usually recovered from
scratch. Meanwhile, Hayes et al. [11] proposed to ask users to
iteratively verify each candidate link, rather than prepare a
training set in advance. This approach then applies the feedback
to the standard Rocchio algorithm [21] on VSM to modify the
weights of the terms in requirements and code. However,
follow-on work [12] demonstrated that the benefits provided by
the previous approach are both limited and not always evident.
As reported by Panichella et al. [14], this issue is caused by the
fact that the queries (i.e., requirements) can contain more terms
than the documents (i.e., code text) in IR-based traceability
recovery. This fact violates the precondition of using the
Rocchio algorithm, i.e., the queries contain only a few terms
compared to the size of the documents to retrieve. The authors
then proposed an adaptive version of the Rocchio algorithm that
considers both the numbers of terms and the previously verified
links. However, like the approach proposed by Panichella et al.
[13] that combine user feedback with code dependency analysis,
the performance of the adaptive Rocchio algorithm is still highly
dependent to the number of user-verified candidate links.

Unlike the discussed IR-based approaches based on user
feedback and/or code dependency analysis, our approach first
iteratively locates a small set of candidate links for users to
verify, based on both IR values and closeness measures. Using
the verified links as input, our approach then amplifies and
propagates users’ valuable adjustments to the IR values of
unverified links through the closeness analysis on code. Thus,
our approach can improve the accuracy of IR-based traceability
recovery by requiring only a small amount of user feedback.

III. PROPOSED APPROACH

We propose a three-step approach. First, we build a Code
Dependency with Closeness Graph (CDCGraph) based on
captured code dependencies with their calculated closeness
measures (Step 1). Second, we use IR techniques to generate
candidate links between requirements and classes (Step 2). Third,
we build candidate regions in the CDCGraph and ask users to
iteratively verify a small number of representative classes in
each region for a given requirement, until the users exit the
verification process; the ranking of IR candidate lists will be
adjusted according to the verified links (Step 3). Details of each
step are explained in the following subsections with a consistent
excerpt adapted from the Maven system [26].

A. Step 1: Building CDCGraph with Calculated Closeness

In this subsection, we introduce how to capture code
dependencies and calculate closeness measures (proposed by
Kuang et al. [10]). We then create a Code Dependency with
Closeness Graph (CDCGraph) as the basis of our approach.

1) Capturing and Organizing Code dependencies among
classes. We consider four kinds of dependencies among classes:
class call dependencies, class inheritance, class usage, and class
data dependencies. A call dependency from class Ca to class Cb

means that there is at least one method call from Ca to Cb. A
class inheritance from class Ca to class Cb means that Ca is
derived from Cb. A class usage from class Ca to class Cb means
that Cb is a field of Ca. A class data dependency between two
classes Ca and Cb exists if two methods Ca.ma and Cb.mb read
or manipulate the same data. In this paper, we only focus on
objects shared in program memory during runtime. However,
this definition can be extended to other data, e.g., stored in the
file system or database. However, Existing researches [10, 23]
have shown that, although less obviously visible, class data
dependencies can complement the first three code dependencies
in understanding requirements-to-code traceability.

To capture the discussed four kinds of code dependencies,
we used a dynamic analysis tool proposed by Kuang et al. [23].
This tool uses JVMTI (Java Virtual Machine Tool Interface) to
capture method-level call and data dependencies. We chose this
tool because: (1) this tool can capture all four code dependencies
by running test cases in a single test run and correctly handle
polymorphism; (2) potentially missed code dependencies caused
by incomplete testing are tolerable for our approach (see Section
VI). To be clear, we only keep the data types of shared objects
to represent data dependencies by aggregating all shared objects
of the same type. The previous case studies [23] reported that
the data-type-level data dependencies can convey comparable
information as object-level ones and save lots of computational
efforts. The four kinds of class-level code dependencies are then
derived based on the captured method-level dependencies: (1)
the class call dependencies are abstracted from method call
dependencies with the number of distinct method calls having
the same calling direction; (2) the class data dependencies are
abstracted from method data dependencies and keep all related
data types; (3) the class usages are also abstracted from method
data dependencies; and (4) the class inheritance is retrieved from
method call dependencies, i.e., the constructor of a derived class
calling the constructor of its base class.

By consulting typical IR-based approaches based on code
dependency analysis (e.g., [10] and [13]), we treat class call
dependency, class inheritance, and class usage as one kind of
code dependencies (i.e., direct code dependencies), and class
data dependencies as a different one. The first three code
dependencies are combined because they are structurally similar
(directed links from source classes to sink classes) while the
class data dependencies are different (undirected links between
two classes with shared data types). Meanwhile, class call
dependency, class inheritance, and class usage largely overlap
with each other, while class data dependency slightly overlaps
with direct code dependencies (for more details please refer to
Section VI). Thus, we calculate closeness measures for these
two kinds of code dependencies separately.

Figure 1 depicts adapted samples of captured code
dependencies from the Maven system. In the figure, a direct
code dependency is represented by a solid line with an arrow and
is labeled with the number of method calls and/or class usages.
For example, a direct code dependency from PluginDescrip-
tor to MojoDescriptor in Figure 1 consists of a class usage
and a class call dependency. Meanwhile, a class data
dependency is represented by a dashed line without an arrow and
is labeled with the number of shared data types. For example in
Figure 1, PluginDescriptor passes two data types as
parameters to MojoDescriptor, i.e., Plugin and Compnent-
Descriptor. Thus, these two classes are also connected by a
class data dependency based on the shared two data types.

Fig. 1. Samples of captured class call dependencies (solid lines with an arrow)
and class data dependencies (dashed lines without an arrow)

2) Closeness for direct code dependencies and class data
dependencies. For a direct code dependency, it is intuitive that
if two classes share more distinct method calls and class usages,
they will interact more closely. Another important factor is the
sink’s in-degree and source’s out-degree in a direct code
dependency. The in-degree refers to the number of sources that
reach the sink and the out-degree refers to the number of sinks
that are reached by the source. A smaller sink’s in-degree
indicates that the sink class focuses more on serving the source
class. A smaller source’s out-degree means that the source class
relies more on the service provided by the sink class. Thus, the
ClosenessDC for direct code dependencies is computed as:

ClosenessDC =
2 × N

WeightedInDegreeSink + WeightedOutDegreeSource
 (1)

where N refers to the number of distinct method calls and class
usages in a given direct code dependency. When counting sink’s
in-degree and source’s out-degree, the number of method calls
and class usages from each direct code dependency are used as
their extra weights. These two variables are denoted as
WeightedInDegreeSink and WeightedOutDegreeSource in the
formula, respectively. ClosenessDC is in the range [0, 1].

A data dependency exists because two classes share distinct
data types with each other. We first use a factor named Inverse
Data Type Frequency (idtf) to weigh the importance of each
data type (proposed by Kuang et al. [23]). Besides, for a class
data dependency between classes Ci and Cj, the ratio between
the number of shared data types in this dependency and the
number of all data types shared by Ci and Cj (from other data
dependencies) is also important to calculate its closeness. Thus,
the ClosenessCD for class data dependencies is computed as:

𝑖𝑑𝑡𝑓 = log
ே

௡೏೟
 ClosenessCD =

∑ idtf(x)x∈{DTi∩DTj}

∑ idtf(y)y∈{DTi∪DTj}
 (2)

where N is the number of all captured class data dependencies
and ndt is the occurrence of a given data type in all data

dependencies. DTi ∩ DTj refers to the data types that Ci shares
with Cj in the data dependency, and DTi∪DTj refers to all data
types that Ci and Cj access in the entire code. ClosenessCD is in
the range [0, 1]. The idea of idtf is similar to the key weighing
factor idf (Inverse Document Frequency) in IR techniques [34].
It reflects how a data type is uniquely shared among classes, thus
indicating the degree of interaction between the two classes
sharing the type. Moreover, before calculating ClosenessCD, a
Thresholdidtf is used to ignore data types with low idtf values. If
all types in a class data dependency are ignored, this dependency
will be ignored. The reason is that this kind of data dependencies
weakens the effect of closeness analysis [10] (The threshold
calibration is discussed in Section IV).

3) Generating the CDCGraph. We now create a Code
Dependency with Closeness Graph (CDCGraph) as G=<V, E>.
Each vertex V represents a class of the code and is annotated
with the class name. Furthermore, we define two kinds of edges
E in the graph: EDC representing direct code dependencies and
ECD representing indirect class data dependencies between two
classes. Finally, each code dependency is annotated with the
calculated closeness measure. A derived CDCGraph based on
the sample code dependencies in Figure 1 is shown in Figure 2.

Fig. 2. Sample CDCGraph with code dependencies annotated by closeness
and created candidate regions (numbered and surrounded by dashed lines)

B. Step 2: Generating IR candidate lists

Our IR technique consists of the following four steps:
 Creating corpus. Each class in code is extracted into

one document containing its comments and identifiers
including class name, method names and field names. For each
requirement, we extract a document that includes its title and
content (e.g., preconditions, main-flow, and sub-flows for
structured use cases or pure text for unstructured requirements).
 Normalizing corpus. The documents of requirements

and classes are normalized by standard pre-processing
techniques for IR including splitting identifiers, special token
elimination, stemming, and stop word removal.
 Indexing corpus and computing textual similarity. We

use tf-idf for corpus indexing and three mainstream IR models
to compute textual similarity: Vector Space Model (VSM) [4],
Latent Semantic Indexing (LSI) [5], and the probabilistic
Jensen and Shannon (JS) model [6].
 Generating candidate links. We rank IR candidate lists

in descending order based on the IR values of candidate links.

Table I shows a candidate list generated through JS between
an issue MNG-4194 (“API to safely release of plugin realms”)
of the Maven system and the twelve classes in Figure 2. The list
is ranked by initial IR values (“IR1”) in descending order (“N1”).
An ‘x’ in column “Trace” marks an actual trace for MNG-4194
existed in the oracle of all traces for Maven.

C. Step 3: Locating Candiate Links for User Verification to
Improve the Ranking of Candiate List

In this step, we first prune the CDCGraph into different
connected areas as candidate regions. We assume that classes in
the same region are likely to implement similar functionalities
of the system. We then ask users to iteratively verify a small
number of candidate links for each region. The verified links,
either as relevant traces or false positives, are used to promote
or demote the IR values of unverified links by analyzing the
CDCGraph, respectively. Finally, we set up conditions for users
to exit the verification process. The goal of this step is to guide
users to verify a small but vital set of candidate links so that we
can amplify and propagate these frugal but valuable judgements
from users to improve IR-based traceability recovery.

1) Locating candidate links for user verification based on
candidate regions. First, we use two separate thresholds based
on calculated closeness measures to prune the CDCGraph, i.e,
ThresholdDC for direct code dependencies and ThresholdCD for
class data dependencies. After the pruning, we choose the
created connected areas that contain at least two or more classes
as candidate regions. For example in Figure 2, we propose a
ThresholdDC of 0.7 and a ThresholdCD of 0.9 and get four
candidate regions shown in the figure (annotated with numbers
1 to 4). Second, for a given requirement, we choose the class
that has the highest IR value in each region as its representative
class. We then ask the user to iteratively verify each candidate
region in descending order based on the IR values between its
representative class and the given requirement. Specifically, if
the representative class is verified as traced to the requirement,
we mark all the other classes in the region as relevant. On the
other hand, if the representative class is verified as not traced,
We ask the user to further verify whether the other classes in
the same region are traced to the requirement according to their
IR values in descending order. Once another class is verified as
not traced, we mark all remaining unverified classes in the
region as irrelevant. Whenever a class in the region is verified
or marked, the relevant class is used to give bonuses to the IR
value of unverified links, while the irrelevant class is used to
give penalties. All IR values will be updated in each iteration of
user verification. Thus, the ranking of unverified candidate
regions will also be updated before the user starts to verify the
next candidate region. How to give bonuses or penalties will be

discussed in the next sub-step. The idea of this sub-step is
similar to the double-elimination tournament. The reason is that
the IR values cannot guarantee to reflect the actual trace link
between the representative class of a candidate region and a
requirement. So we give the region a second chance to continue
user verification on it until another class is verified as irrelevant.
It is also worth-while noticing that we assume the user to
always make correct verifications on the IR candidate links. We
argue that this assumption is reasonable because: (1) it is widely
used in the research of using user feedback to improve IR-based
traceability [11-17]; (2) we aim to use only a small amount of
user feedback to improve IR-based approaches, so we argue
that the assumption is also viable for our approach in practice.

2) Adjusting IR Values According to User Feedback. First,
when a candidate link is verified (by the user) or marked (by
our approach) as a relevant trace, we use separate strategies on
two kinds of code dependencies to give bonuses to the IR values
for each class CUNVER in the unverified links. For direct code
dependency, we try to find a path from CUNVER to the class CVER
in the verified or marked link. A valid path can only have one
direction, meaning CUNVER transitively reaches or is reached by
CVER. For class data dependency, we consider whether CUNVER
can directly (non-transitive) connect to CVER. CUNVER can get
bonuses according to both kinds of code dependencies. The IR
value updated with a bonus (IRbonus) for CUNVER is computed as:

ADJDC = ෑ ClosenessDC(x)
x∈PATH

IRbonus = IRcurrent + IRtop(ADJDC+ ClosenessCD(x)) (3)
where IRcurrent represents CUNVER’s current IR value, IRtop
represents the highest IR value between the given requirement
and all classes, PATH represents the set of direct code
dependencies in a discovered path between CUNVER and CVER,
ClosenessDC(x) represents the closeness measure for each direct
code dependency in the path, and ClosenessCD(x) represents the
closeness measure of the class data dependency that directly
connects CUNVER and CVER. It is possible that there are multiple
paths between CUNVER and CVER. We only keep the path that can
maximize ADJDC for each CUNVER in the unverified link.

Unlike giving bonuses, when a candidate link is verified or
marked as a false positive, we use a rather conservative way to
give penalties to the IR values for CUNVER in the unverified links
by considering the discussed one-direction paths based on direct
code dependencies only. This is because previous work [13] has
reported that when using the same bonuses to give penalties
according to the verified false positives, this enhancing strategy
based on user feedback was not able to improve IR-based
traceability recovery. Thus, the IR value updated with a bonus
(IRpenalty) for CUNVER is computed as:

IRpenalty = IRcurrent (1 - IRtop × ADJ
DC

) (4)

where IRcurrent represents CUNVER’s current IR value, IRtop
represents the highest IR value between the given requirement
and all classes, and ADJDC is defined in Formula (3). The entire
process of Step 3 is descripted in Algorithm 1, where list
represents the candidate list for a given requirement req. For
example, when the user starts to verify the initial candidate list

TABLE I. A CANDIDATE LIST BETWEEN REQUIREMENT MNG-4194 AND
TWELVE CLASSES IN MAVEN AFTER STEP 2 (N1, IR1) AND STEP 3 (N2, IR2)

N1 Class IR1 Trace IR2 N2
1 PluginRealmCache 0.298 x 0.298 1
2 CacheUtils 0.227 x 0.227 7
3 PluginDescriptor 0.113 x 0.284 6
4 DefaultClassRealmManager 0.113 x 0.179 8
5 Parameter 0.112 0.090 10
6 ReactorReader 0.054 x 0.298 2
7 DefaultPluginRealmCache 0.037 x 0.298 3
8 MojoExecution 0.032 0.029 11
9 MojoDescriptor 0.026 0.154 9
10 DefaultPluginDescriptorCache 0.025 x 0.298 4
11 ArtifactClassRealmConstituent 0. 018 x 0.298 5
12 PluginDescriptorBuilder 0. 016 0.013 12

shown in Table I, the top ranked class PluginDescriptor has
highest IR value is 0.298. Because this class is not in any
candidate region, our approach asks user to verify CacheUtils
in Region 1. With a verified relevant trace, our approach uses all
three classes in Region 1 to give bonuses to other unverified
classes. Similarly, the user then verifies Region 2 and 3 and
gives bonuses. However, when MojoDescriptor in Region 4
is verified as a false positive, other unverified classes received
penalties (such as Parameter). The reordered candidate list is
also shown in Table II (i.e., columns “IR2” and “N2”).

Exiting the user verification. Previous work [12] has
reported that when met too many false positives, the user of an
IR-based recovery approach will be exhausted and likely to be
error-prone during the verification. Thus, we set up a stopping
criterion that allows users to exit the verification process when
they meet only five false positives for each requirement. The
reason for this criterion is trying to use minimum user feedback
to improve IR-based traceability recovery with the help of
closeness analysis. However, the user can choose to verify more
candidate links for better accuracy (discussed in Section V).

IV. EXPERIMENTAL SETUP

We now introduce our experimental setup to evaluate our
approach. Section IV.A introduces the five evaluated systems.
Section IV.B defines metrics for evaluating the performance of
our approach and baseline approaches. Section IV.C discusses
the threshold calibration for our approach. At last, Section IV.D
discusses our research questions and the design of experiments.

A. Evaluated Systems

Our evaluation is based on five real-world software systems:
iTrust [25], Maven [26], Pig [27], GanttProject[35] and
Infinispan [33]. We chose these systems because of their

availability of both requirements specifications with developer
maintained test cases and their Requirements-to-code Trace
Matrices (RTM). For GanttProject, high-quality requirements-
to-code traces are gained by recruiting the original developers.
The RTM of iTrust contains method-level traces maintained by
original developers and is publicly available [25]. However, the
RTMs of the other four systems are at class-level. To keep our
experiment consistent at the same granularity, we propagated the
method-level traces of iTrust to class-level traces by aggregating
all traces to methods of a class on the class-level.

Meanwhile, Maven, Pig, and Infinispan come from the
dataset named IlmSeven [28]. This dataset consists of seven
open source software projects that are implemented in Java. By
analyzing both the issue-tracking tool Jira [29] and GitHub over
the seven projects, this dataset records a large number of
development artifacts and links between them, including the
commit logs and issues. When the text of a commit log contains
a unique id of an issue, indicating that these code changes are
committed to address the mentioned issue, we can retrieve actual
traces created during daily development between the issue and
the classes modified by this commit (i.e., the changed Java files).

Furthermore, to make sure that the issues linked with commit
logs can be treated as meaningful functional requirements (the
main target of this paper), we use the following five heuristics
to filter and merge the issues based on the IlmSeven dataset: (1)
we ignore issues with terms of “testing” or “testcase”; (2) the
resolution of issues must be “Fixed”; (3) the priority of issues
must be “Major” or “Critical”; (4) we merge the issues if each
two of them have the explicit issue link as “part-of”; (5) we only
keep issues that have or contain (for the merged issues) the issue
types as “New feature” (or “Feature request”). The reason for
the last two heuristics is that contributors of an open source
project usually start a “New feature” issue to apply for a new
system functionality and then improve the implementation of
this functionality through “Improvement”, “Bug”, or even “New
feature” issues gradually. Meanwhile, we capture high-quality
call and data dependencies by using the dynamic analysis tool
[23] during the running of the sample systems (for Maven and
Infinispan) or the test cases (for iTrust, GanttProject, and Pig)
maintained by original developers. We randomly inspected
about 15% of both the filtered and merged issues and the
captured code dependencies for each evaluated system. We
found no contradictories in either the organized issues or the
code dependencies. Unfortunately, because collecting code
dependencies and preparing linked issues with an acceptable
quality requires manual efforts, at this moment we can only

Algorithm 1 Improving the Ranking of IR Candidate List for
each Requirement (req, list, ThresholdDC, ThresholdCD)

1: regions <- CDCGraph.prune (ThresholdDC, ThresholdCD);
2: while not (stopping criterion) do
3: regiontop <- regions.getTopRegion (list, req);

 4: classmaxIR <- Regiontop.getMaxIRClass(req);
5: The user verifies the link (req, classmaxIR)
6: if (req, classmaxIR) is a relevant trace then
7: foreach class in regiontop do

 8: giveBonusToUnverifiedLink (class, list);
 9: end foreach
10: else
11: givePenaltyToUnverifiedLink (classmaxIR, list);
12: Hide classmaxIR from regiontop

13: classmaxIR <- regiontop.getMaxIRClass(req);
14: while (req, classmaxIR) is a relevant trace do
15: giveBonusToUnverifiedLink (classmaxIR, list);
16: Hide classmaxIR from regiontop

17: classmaxIR <- regiontop.getMaxIRClass(req);

18: end while
19: foreach class in regiontop.remainingClasses() do
20: givePenaltyToUnverifiedLink (class, list);
21: end foreach
22: end if
23: Hide regiontop from regions
24: Hide verified links and reorder list
25: end while

TABLE II. OVERVIEW OF THE FIVE EVALUATED SYSTEMS

iTrust
[25]

Maven
[26]

Pig
[27]

Infinispan
[33]

GanttPro-
ject[35]

Version 13.0 3.5.2 0.17.0 9.2.0 2.0.9
Programming language Java Java Java Java Java

KLoC 43 101 365 521 45
Executed classes 138 94 236 388 124

Evaluated requirements 34 36 68 237 16
Ave. number of classes

tracing to a requirement
8

(1-17)
4

(1-18)
5

(1-38)
6

(1-79)
20

(4-38)
Direct code dependencies 274 182 1998 2126 617
Class data dependencies 4792 1812 5405 6076 1788
Relevant Traces in RTM 255 155 356 1515 315

perform our experiments on Maven, Pig, and Infinispan from the
IlmSeven data set. We are currently working on using the other
four systems to further evaluate our approach. Table II lists basic
information about the five evaluated systems. The entire dataset
is open at: https://dataverse.harvard.edu/dataverse/CLUSTER.

B. Metrics

We first leveraged two well-known metrics for our
evaluation, i.e., recall and precision:

 recall =
|relevant ∩ retrieved|

|relevant|
% precision =

|relevant ∩ retrieved|

|retrieved|
% (5)

where relevant is the set of relevant links and retrieved is the
set of all links retrieved by traceability recovery approaches.

A common way to evaluate the accuracy of IR techniques is
to compare the precision values obtained at different recall
levels, resulting in a set of precision-recall points displayed as
curves. We then leveraged the following two metrics: average
precision (AP) and mean average precision (MAP). These two
metrics are widely used to evaluate IR-based approaches for
traceability recovery. AP and MAP are computed as:

𝐴𝑃 =
∑ (Precision(r) × isRelevant(r))N

r = 1

|RelevantDocuments|
 𝑀𝐴𝑃 =

 ∑ AP(q)
Q
q = 1

Q
 (6)

where r is the rank of the target artifact in an ordered list of links,
Precision(r) represents its precision value, isRelevant() is a
binary function assigned 1 if the link is relevant or 0 otherwise,
N is the number of all documents, q is a single query, and Q is
the number of all queries. AP measures how well relevant
documents of all queries (requirements) are ranked to the top of
the retrieved links. Meanwhile, MAP uses the average of the AP
scores of all queries to measure how well relevant documents
for each query are ranked to the top of the retrieved links.

C. Threshold Calibration

We need to calibrate four thresholds for our approach:
Thresholdidtf, ThresholdDC, ThresholdCD, and the k value for LSI.
According to the previous case studies [10, 23], we used a
Thresholdidtf of 1.4 to ignore data types with small idtf value
(discussed in Section III.B). We then follow the same process
proposed by Kuang et al. [10] to calibrate both ThresholdDC and
ThresholdCD. We first used the 3σ criterion to filter out outliers
(closeness measure three times higher or lower than the standard
deviation σ) from the set of ClosenessDC. We then rescaled
closeness measures into [0, 1] by min-max normalization.
Filtered abnormally high closeness measures were set to 1 and
abnormally low closeness measures were set to 0 in the rescaled
range. We used the same process to calibrate ThresholdCD. The
two processes led to a ThresholdDC of 0.7 and a ThresholdCD of
0.9 (the same two thresholds used in the previous work [10])
based on our experiment results. These two thresholds are only
used to build candidate regions for all evaluated systems, we still
use the original closeness measures for Algorithm 1. For the k
value of the LSI method, we found that k = 85 provided the best
accuracy for iTrust, Maven, and GanttProject, while for Pig and
Infinispan k = 220 is the best. The two separate LSI k values are
necessary because the number of executed classes of iTrust,
Maven, and GanttProject are 138, 94, and 124 while the executed
classes for Pig and Infinispan are 236 and 388, respectively. We
use the same four thresholds for all systems to avoid biases. For
new systems we suggest using the same calibration process
before fine-tuning them to optimize the performance.

D. Research Questions

In this paper, we aim to study whether the combination of a
small amount of user feedback and the closeness analysis on
code dependencies is able to improve IR-based traceability
recovery. Thus, we formulated our research question as follows:

Can our approach outperform baseline approaches for IR-
based traceability recovery?

To study the RQ, we use the following four baseline
approaches: (1) the pure IR-based approach (IR-ONLY); (2) the
approach combining code dependency analysis with user
feedback: User-Driven Combination of Structural and Textual
Information (UD-CSTI [13]); (3) the approach using closeness
analysis on code only: Traceability Recovery by Information
retrieval and ClosEness analysis (TRICE [10]); and (4) the
approach using an adaptive version of the Rocchio Algorithm:
Adaptive Relevance Feedback (ARF [14]). Our approach is
named as CLUSTER. We planned to use three mainstream IR
models, i.e., VSM, LSI, and JS, to compare CLUSTER with the
four baseline approaches. However, ARF is proposed on VSM
because the Rocchio Algorithm works on the text vectors [21].
Furthermore, applying the Rocchio Algorithm to LSI or JS is
not trivial. Specifically, De Lucia et al. [12] used the Rocchio
algorithm before and after LSI, i.e., decomposing the term-by-
document matrix, while Salton and Buckley [37] reported that
the Rocchio Algorithm is not as competitive on the probabilistic
model as on VSM. Since the main focus of this paper is not to
optimize ARF on LSI and JS, to avoid any biases, we only
compare CLUSTER with ARF through VSM. For the other
three baselines, the comparison with CLUSTER is based on all
three IR models. To find out whether CLUSTER is able to
improve IR-based traceability recovery with a small amount of
user feedback, for UD-CSTI and ARF we make all candidate
links to be verified by users to reach the best performance of
the two approaches (default settings according to related papers [13,
14]), while CLUSTER still use the stopping criterion that the
verification stops when five false positives are met. Based on this
comparison, we expect to find out whether a small amount of user
feedback with the help of closeness analysis on code can reach
or even exceed the improvement brought by verifying the entire
candidate lists. Because we assume that the user always makes
correct verifications (discussed in Section III.D), we simulate
this verification process by referring to the known RTM of the
evaluated systems for CLUSTER, UD-CSTI and ARF.

Besides the proposed metrics in Section IV.B, we used a
statistical significance test to check whether the performance of
CLUSTER is significantly better than the performance of the
baseline approaches. By consulting the significance test used in
[10] and [31], we use the F-measure at each recall point as the
single dependent variable of our study. We use the F-measure
because we want to know whether CLUSTER improves both
precision and recall. The F-measure is computed as:

𝐹 =
ଶ௉ × R

௉ାோ
 (7)

where P represents precision and R represents recall and F is the
harmonic mean of P and R. A higher F-measure means that both
precision and recall are high. We then use the Wilcoxon rank
sum test [32] to test the following null hypothesis:

H0: There is no difference between the performance of
CLUSTER and baseline approaches

We use α = 0.05 to accept or refute the null hypothesis. We
also use a non-parametric effect size measure for ordinal data,
i.e., Cliff’s d [38], to compute the magnitude of the effect of our
approach compared to the baseline approaches as follows:

𝑑 = ቚ
#(௫భ வ ௫మ) ି #(௫భ ழ ௫మ)

௡భ௡మ
 ቚ (8)

where x1 and x2 are F-measure values of CLUSTER and the
baseline approaches, and n1 and n2 are the sizes of the sample
groups. The effect size is considered small for d in the range
[0.15, 0.33), medium for d in the range [0.33, 0.47) and large if
d equals or is larger than 0.47.

V. RESULTS AND DISCUSSION

Table III shows the results of the five evaluated systems
(rows). For each system and each IR model (columns), we
compared the performance of four baseline approaches with
CLUSTER. We leveraged the introduced performance metrics
AP and MAP (sub column 1 and 2). Sub column 3 shows the p-
value of the F-measure significance test for CLUSTER and sub
column 4 shows the Cliff’s d. In 48 out of 50 cases, the F-
measure for the results of CLUSTER is significantly higher than
the F-measure of the compared four baseline approaches (p-
value < 0.05) at each level of recall, indicating that CLUSTER
significantly outperforms baseline approaches in most cases.
Specifically, CLUSTER outperforms IR-ONLY, UD-CSTI, and
TRICE on both AP and MAP in all cases. When compared with
ARF, CLUSTER performs worse in AP (0.89 on average) but
outperforms in MAP (4.43 on average). We need to point out
that the performance of CLUSTER is achieved by tolerating
only five candidate links verified as false positives for each
requirement, while the performance of UD-CSTI and ARF relies
on all inks in the candidate lists to be verified. In particular, the
average user-verified links over all requirements for iTrust,

Maven, Pig, Infinispan, and GanttProject are 6.10, 5.74, 5.72,
5.62, and 8.48, respectively. The ratio between user-verified
classes and all classes in the code (i.e., “executed classes” in
Table II) ranges from 1.45% to 6.84% for each requirement. This
observation demonstrates that by combining with closeness
analysis on code dependencies, a small amount of user feedback
can be amplified and propagated to improve IR-based
traceability. We argue that this observation is very beneficial to
our approach for improving IR-based traceability recovery
because in practice the user feedback can be valuable but frugal.
Figure 3 shows and compares the precision-recall curves for the
four approaches grouped by each system and IR model.

We now use the adapted excerpt from the Maven system
(discussed in Section III) to demonstrate why CLUSTER is able
to outperform TRICE and UD-CSTI with a small amount of user
feedback. As we discussed, TRICE only uses the top-ranked
class inside a code region from the candidate list for each
requirement as the input. So according to Figure 2 and Table II,
TRICE will start its bonusing only from the second-ranked
CacheUtils which is in the created Region1. So its
improvement is quite limited. To make things worse, if the initial
IR values are not reliable, TRICE will give bonuses to candidate
links that are actually irrelevant to a given requirement and thus
even decrease its performance. This can be observed from Table
III and Figure 3 that when the initial IR results are low (e.g., Pig-
VSM), TRICE performs the worst compared to the other four
approaches. In contrast, CLUSTER uses both the candidate
region and initial IR values of classes in the region to locate
candidate links for users to verify. It further asks the user to
iteratively verify multiple classes from different candidate
regions. In the Maven sample, Region 1, Region 2 and Region3
will be verified as relevant regions. So even the class with small
IR values, such as ArtifactClassRealmConstituent, can
also get multiple bonuses because it has code dependencies to

TABLE III. THE NUMBER OF COMPUTED AP, MAP, P-VALUE, AND CLIFF’S D EVALUATING EACH APPROACH FOR ALL TWENTY EXPERIMENT
VARIATIONS (EVALUATED SYSTEMS ITRUST, MAVEN, PIG, GANTTPROJECT, AND INFINISPAN COMBINED WITH IR MODELS VSM, LSI, AND JS)

 VSM JS LSI
AP MAP p-value Cliff’s delta AP MAP p-value Cliff’s delta AP MAP p-value Cliff’s delta

iTrust IR-ONLY 42.55 56.55 <0.01 0.29 38.28 55.99 <0.01 0.31 41.59 54.63 <0.01 0.28
UD-CSTI 45.75 59.08 <0.01 0.22 43.26 62.99 <0.01 0.19 46.04 58.26 <0.01 0.18
TRICE 45.12 58.46 <0.01 0.24 44.49 60.77 <0.01 0.19 44.63 56.67 <0.01 0.23
ARF 44.12 58.35 <0.01 0.31 - -
CLUSTER 54.12 65.72 - - 49.08 64.31 - - 51.08 63.07 - -

Maven IR-ONLY 14.54 29.46 <0.01 0.51 15.86 35.03 <0.01 0.47 14.25 35.13 <0.01 0.44
UD-CSTI 15.14 30.40 <0.01 0.46 17.95 36.72 <0.01 0.35 15.46 36.65 <0.01 0.32
TRICE 14.15 29.16 <0.01 0.49 15.62 35.44 <0.01 0.46 14.51 35.52 <0.01 0.39
ARF 24.25 31.34 0.86 0.01 - - - - - - - -
CLUSTER 22.96 38.07 - - 23.09 39.74 - - 20.36 39.79 - -

Pig IR-ONLY 22.05 42.38 <0.01 0.23 15.94 35.65 <0.01 0.25 20.39 41.83 <0.01 0.19
UD-CSTI 24.25 43.52 <0.01 0.15 19.26 37.92 <0.01 0.15 23.05 42.99 0.03 0.09
TRICE 16.91 41.75 <0.01 0.26 113.94 36.68 <0.01 0.21 16.08 41.01 <0.01 0.21
ARF 35.07 44.95 0.56 0.03 - - - - - - - -
CLUSTER 24.75 45.12 - - 20.34 39.81 - - 22.95 44.38 - -

Gantt
Project

IR-ONLY 43.17 49.79 <0.01 0.39 36.50 46.76 <0.01 0.41 43.94 51.70 <0.01 0.38
UD-CSTI 47.86 55.66 <0.01 0.24 45.91 58.39 <0.01 0.26 50.23 58.58 <0.01 0.16
TRICE 46.86 53.81 <0.01 0.32 39.95 49.50 <0.01 0.38 43.39 51.91 <0.01 0.32
ARF 56.16 60.71 <0.01 0.22 - - - - - - - -
CLUSTER 55.41 65.46 - - 56.30 63.83 - - 54.39 63.53 - -

Infinispan IR-ONLY 8.23 23.51 <0.01 0.20 6.43 24.25 <0.01 0.18 8.62 25.00 <0.01 0.22
UD-CSTI 9.31 24.18 <0.01 0.12 7.80 25.22 0.02 0.05 10.70 26.14 <0.01 0.06
TRICE 6.65 22.79 <0.01 0.24 5.72 23.82 <0.01 0.18 7.32 23.77 <0.01 0.24
ARF 13.58 24.75 <0.01 0.14 - - - - - - - -
CLUSTER 11.47 26.22 - - 9.67 26.87 - - 12.63 28.29 - -

all relevant regions. Furthermore, the candidate links verified as
false positives are also used to improve the ranking of candidate
lists by giving penalties to IR values of unverified links. On the
other hand, although UD-CSTI is able to eventually bonus all
relevant classes based on the code dependency analysis without
making big mistakes, it requires great manual efforts to verify
lots of candidate links, especially for giving bonuses to the
relevant class with small IR values. On the contrary, CLUSTER
is able to amplify user-verified links through the candidate
regions through the closeness analysis on code dependencies.

We now focus on comparing the differences between the
number of false positives made by CLUSTER, IR-ONLY, and
ARF at different levels of recall for twenty experiment
variations (shown in Table IV). The sub column 1 (denoted as
IR-ONLY) shows that CLUSTER is able to bring a large
reduction of 4250 retrieved false positives at the 80% level of
recall on Infinispan-LSI. This saves notable efforts to the user
when using CLUSTER instead of IR-ONLY. Such an
improvement is particularly evident when the recall is between
20% and 80%. Furthermore, we compare CLUSTER with ARF
that uses all verified links as its input (shown in sub column 2,
denoted as ARF). We found that in the majority of cases,
CLUSTER is still able to make less false positives compared to
ARF, especially around recall levels between 40% to 80%. The
overall observation demonstrates that CLUSTER is useful to
save great manual efforts for the user who aims to recover
requirement-to-code traces by IR-based approaches in practice.
However, we also noticed that ARF is able to achieve good
precision at the lower level of recall (less than twenty percent).
It is even more interesting that ARF can perform better on the
systems with low text quality (e.g., Maven and Pig) instead of
those with good text quality (e.g., iTrust). The reason might be
that ARF will not apply its adaptive Rocchio Algorithm unless
the text length of queries (requirements) is smaller than the text
length of documents (classes). The use cases in iTrust are well
documented with text size larger than the code texts in most

cases. So ARF can hardly be activated when applied to iTrust.
On contrary, the issue texts in Maven and Pig is short compared
to their class texts. Thus, ARF is able to adjust the text vectors
created from these issues multiple times. To further combine our
approach with ARF is one of our future work.

We made four additional observations. First, the results of
CLUSTER can vary with different IR models for the same
system. The reason is that re-ranking IR candidate lists in
CLUSTER relies on giving bonuses to generated IR values.
These values can be very different if they are computed by
different IR models. Second, we also tried to let all created
candidate regions verified to optimize CLUSTER. We found
that for all five systems, the biggest increase of performance can
be achieved when the user is asked to verify about thirteen
classes from different candidate regions. So if the user aims to
recover more relevant traces at a higher level of recall (such as
60%-80%), we suggest she verify around thirteen classes on
CLUSTER for a given requirement. Third, the increase of the
performance brought by CLUSTER is not significant for
Infinispan and Pig (see related Cliff’s delta in Table III). This is
probably because the requirements we elicited from the filtered
and merged issues in IlmSeven dataset are too fine-grained
compared to the requirements maintained by developers of
iTrust and GanttProject. This can also be observed from Table
II where the numbers of average classes that traces to a
requirement for iTrust and GanttProject are 8 and 12, while for
Infinispan and Pig the numbers are 6 and 5, respectively. In
future work we plan to use text clustering techniques to further
enhance the quality of derived traces from issues linked to
commit logs, which is relevant to the work proposed by Palomba
et al. [30]. Fourth, we found that although CLUSTER is built on
three different perspectives, i.e., textual similarities, code
structural information, and user feedback, our approach still
cannot achieve acceptable precision at higher level recall (e.g.,
higher than 80%), even if we use all verified candidate links as
input on the evaluated systems with good text quality (e.g.,

Fig. 3. Precision/Recall curves grouped by evaluated systems (iTrust, Maven, Gantt, Infinispan, Pig) and IR models (VSM, LSI, JS)

iTrust). This situation can also be observed in many IR-based
traceability recovery approaches [8-16]. We plan to refine
CLUSTER in future work to help users recover the majority of
relevant traces by discarding the least false positives.

VI. THREATS TO VALIDITY

Internal Threats. A possible threat is the incomplete code
dependencies due to the incompleteness nature of dynamic
analysis. However, compared with static analysis, our approach
prefers concise but correct descriptions of system behavior (e.g.,
to correctly handle polymorphism) to work because CLUSTER
mainly targets functional requirements. We further tried to
alleviate this problem by extensively executing the test cases or
sample systems maintained by original developers. Meanwhile,
we treat class call dependency, class inheritance, and class usage
as the same direct code dependencies and we treat class data
dependency as a different kind based on their structures in the
CDCGraph (discusses in Section III.A). We further investigated
how these code dependencies overlap with each other. We found
that for all evaluated systems the class inheritance and class
usage are 100% overlapped with class call dependencies. The
reasons are: (1) for class inheritance, the constructor of a derived
class will eventually call the constructor of its base class; (2) for
class usage, a class usually uses the fields of another class
through the get-set methods unless the fields are publicly visible,
which is rare in practice. On the contrary, only 3% to 23% of
class data dependencies overlap with direct code dependencies
for the evaluated systems, indicating a significant difference.
Finally, by consulting previous work [11-14, 39], the user
feedback we used in this paper is simulated by referring to the
known RTM of the evaluated systems. Evaluating how
CLUSTER works under real-world user verification process is
in our future work.

External Threats. At this moment we only collected code
dependencies and linked issues with acceptable qualities on
three out of seven systems in the IlmSeven dataset. However,
we consider our findings still relevant since we evaluated five
real-world systems in total that are either widely studied or used
in practice from different domains (iTrust: J2EE medical care
system, Maven: project dependency management, Pig: big-data

processing, Infinispan: distributed in-memory data store, and
GanttProject: project planning). Furthermore, we combined the
evaluated systems with three mainstream IR models (i.e., VSM,
LSI, and JS) to extend our experiments to twenty variations in
total (e.g., iTrust-VSM and Pig-JS). Meanwhile, because of our
heuristics to filter and merge issues from the IlmSeven dataset,
our evaluation is only based on part of RTMs of Maven, Pig, and
Infinispan. However, we use the same RTMs to compare our
approach with the baselines for each system, thus making no
bias. The experiment results of pure IR-based approaches on
Maven, Pig and Infinispan shows that our heuristics can create
traces from their issues with acceptable text quality. Finally, we
re-implemented all baseline approaches because we cannot find
available implementations. However, all related papers provided
detailed algorithms and discussions [10, 13, 14] that help us to
avoid big deviations when re-implementing baseline approaches.

VII. CONCLUSIONS AND FUTURE WORK

User feedback on candidate links created by IR technique
has been used to improve IR-based traceability recovery.
However, the performance of these approaches is highly
dependent on the number of user-verified links. Thus, we use the
closeness measure to quantify the degree of interactions for code
dependencies. We then proposed an approach that combines the
closeness analysis with user feedback to improve IR-based
traceability recovery. An empirical study based on five real-
world systems showed that our approach uses a small amount of
user feedback to outperform four baselines. Our future work is
to find out how to guide users to recover most relevant traces
with least candidate links to be verified when using IR-based
recovery approaches. The dataset in this paper is now publicly
available at: https://dataverse.harvard.edu/dataverse/CLUSTER.

ACKNOWLEDGMENT

We are funded by the National Natural Science Foundation
of China (Grant Nos. 61690204 and 61802173), the
Collaborative Innovation Center of Novel Software Technology
and Industrialization, the German Ministry of Education and
Research (BMBF) grant: 01IS16003B and by DFG grant: MA
5030/3-1, and Pro2Future, a COMET K1-Centre of the Austrian
Research Promotion Agency (FFG), grant no. 854184.

TABLE IV. REDUCED FALSE POSITIVES AT DIFFERENT LEVELS OF RECALL (CLUSTER COMPARED WITH IR-ONLY AND ARF)

 Recall (20%) Recall (40%) Recall (60%) Recall (80%) Recall (100%)
 IR-ONLY ARF IR-ONLY ARF IR-ONLY ARF IR-ONLY ARF IR-ONLY ARF
 FP FP FP FP FP FP FP FP FP FP

iTrust
VSM -6 0 -65 -103 -375 -529 -578 -519 -189 -145

JS +3 - -123 - -532 - -736 - -257 -
LSI -7 - -74 - -395 - -419 - -57 -

Maven
VSM -233 -62 -504 -110 -646 -3 -822 +385 +60 0

JS -160 - -483 - -775 - -770 - +5 -
LSI -115 - -390 - -915 - -705 - -7 -

Pig
VSM -29 +64 -409 -173 -1456 -1312 -1393 -661 +208 -6

JS -145 - -964 - -1164 - -645 - +110 -
LSI -45 - -493 - -941 - -690 - -118 -

Gantt
Project

VSM -27 +9 -121 -43 -159 -92 -226 -195 -294 -131
JS -67 - -136 - -178 - -294 - -169 -

LSI -21 - -93 - -137 - -266 - -109 -

Infinispan
VSM -1124 -815 -2641 -2221 -4172 -2472 -4143 -1847 +17 +35

JS -1556 - -3742 - -3027 - -2295 - -368 -
LSI -1123 - -3671 - -4241 - -4250 - -2 -

REFERENCES
[1] CoEST: Center of excellence for software traceability,

http://www.CoEST.org

[2] P. Rempel and P. Mäder, “Preventing Defects: The Impact of
Requirements Traceability Completeness on Software Quality,” IEEE
Transactions on Software Engineering (TSE), vol. 43, no. 8, pp. 777-797,
2017.

[3] P. Mäder and A. Egyed, “Assessing the effect of requirements traceability
for software maintenance,” in the 28th IEEE International Conference on
Software Maintenance (ICSM), Riva del Garda, Italy, 2012, pp. 171-180.

[4] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering Traceability Links between Code and Documentation,”
IEEE Transactions on Software Engineering(TSE), vol. 28, no. 10, pp.
970-983, 2002.

[5] A. Marcus and J I. Maleti, “Recovering documentation-to-source-code
traceability links using latent semantic indexing,” in the 25th IEEE
International Conference on Software Engineering (ICSE), 2003, pp. 125-
135.

[6] A. Abadi, M. Nisenson, and Y. Simionovici, “A Traceability Technique
for Specifications,” in the Proceedings of the 16th IEEE International
Conference on Program Comprehension (ICPC), 2008, pp. 103-112.

[7] J. Cleland-Huang, R. Settimi, C. Duan and X. Zou, “Utilizing supporting
evidence to improve dynamic requirements traceability,” in the 13th IEEE
International Conference on Requirements Engineering (RE), 2005,
pp.135-144.

[8] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De Lucia, “On integrating
orthogonal information retrieval methods to improve traceability
recovery,” in the 27th IEEE International Conference on Software
Maintenance (ICSM), 2011, pp. 133-142.

[9] C. McMillan, D. Poshyvanyk, and M. Revelle, “Combining textual and
structural analysis of software artifacts for traceability link recovery,” in
Proceedings of the International Workshop on Traceability in Emerging
Forms of Software Engineering, 2009, pp. 41–48.

[10] H. Kuang, J. Nie, H. Hu, P. Rempel, J. Lü, A. Egyed, and P. Mäder,
“Analyzing closeness of code dependencies for improving IR-based
Traceability Recovery,” in the 24th IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2017, pp. 68-
78.

[11] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate link
generation for requirements tracing: The study of methods,” IEEE
Transactions on Software Engineering(TSE), vo1. 32, no. 1, pp. 4–19,
2006.

[12] A. De Lucia, R. Oliveto, and P. Sgueglia, “Incremental approach and user
feedbacks: a silver bullet for traceability recovery,” in Proceedings of the
22nd IEEE International Conference on Software Maintenance(ICSM),
2006, pp. 299–309.

[13] A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto, D.
Poshyvanyk, and A. De Lucia, “When and How Using Structural
Information to Improve IR-Based Traceability Recovery”, in the 17th
European Conference on Software Maintenance and Reengineering
(CSMR), 2013, pp. 199-208.

[14] A. Panichella, A. De Lucia, and A. Zaidman, “Adaptive user feedback for
ir-based traceability recovery,” in Proceedings of 8th International
Symposium on Software and Systems Traceability (SST), 2015, pp. 15–
21.

[15] M. Di Penta, S. Gradara, G. Antoniol, “Traceability Recovery in RAD
Software Systems,” in Proceedings of 10th International Workshop on
Program Comprehension, Paris, France, 2002, pp. 207-216.

[16] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically Enhanced
Software Traceability Using Deep Learning Techniques,” in Proceedings
of the 39th International Conference on Software Engineering(ICSE),
2017, pp. 3-14.

[17] G. Antoniol, G. Casazza, and A. Cimitile, “Traceability Recovery by
Modelling Programmer Behaviour,” in Proceedings of 7th Working
Conference on Reverse Engineering, Brisbane, Queensland, Australia,
2002, pp. 240-247.

[18] Denys Poshyvanyk, Yann- Gaël Guéhéneuc, Andrian Marcus, Giuliano
Antoniol, “Václav Rajlich: Feature Location Using Probabilistic Ranking
of Methods Based on Execution Scenarios and Information Retrieval,” in
IEEE Trans. Software Eng, 2007, vol. 33, no. 6, pp. 420-432.

[19] B. Dit, M. Revelle, D. Poshyvanyk, “Integrating information retrieval,
execution and link analysis algorithms to improve feature location in
software,” in Empirical Software Engineering(EMSE), 2013, vol. 18, no.
2, pp. 277-309.

[20] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Improving ir-based traceability recovery using smoothing filters”, in
Proceedings of the 19th International Conference on Program
Comprehension(ICSM), 2011, pp. 21–30.

[21] J. Rocchio, Relevance feedback in information retrieval, G. Salton, Ed.
Englewood Cliffs, NJ: Prentice-Hall. 1971.

[22] B. Burgstaller and A. Egyed, “Understanding where requirements are
implemented,” in 26th IEEE International Conference on Software
Maintenance (ICSM), Timișoara, Romania, 2010, pp. 1-5.

[23] H. Kuang, P. Mäder, H. Hu, A. Ghabi, L. Huang, J. Lü, and A.
Egyed, “Can method data dependencies support the assessment of
traceability between requirements and source code?”, Journal of software:
Evolution and Process (J. Softw. Evol. and Proc.), 2015, vol. 27, no. 11,
pp. 838–866.

[24] H. Kuang, J. Nie, H. Hu, and J.Lü, “Improving Automatic Identification
of Outdated Requirements by Using Closeness Analysis Based on Source
Code Changes,” in Software Engineering and Methodology for Emerging
Domains: the proceedings of the 15th National Software Application
Conference (NASAC English Track), 2016, pp. 52-67.

[25] iTrust System: http://agile.csc.ncsu.edu/iTrust/wiki/doku.php

[26] Maven System: http://maven.apache.org/

[27] Pig System: https://pig.apache.org/

[28] M. Rath, P. Rempel, and P. Maeder, “The IlmSeven Dataset”, in the
Proceedings of the 25th IEEE International Requirements Engineering
Conference (RE), 2017, pp. 516 - 519

[29] Jira Tool: https://www.atlassian.com/software/jira

[30] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci,
and A. De Lucia, “Recommending and localizing change requests for
mobile apps based on user reviews,” in Proceedings of the 39th
International Conference on Software Engineering (ICSE), 2017, pp. 106-
117.

[31] N. Ali, Z. Sharafi, and Y. Gueheneuc, “An empirical study on the
importance of source code entities for requirements traceability,”
Empirical Software Engineering, 2014, vol. 20, no. 2, pp. 442-478.

[32] W. J. Conover, Practical Nonparametric Statistics (3rd edn). Wiley:
Hoboken, New Jersey, USA, 1998.

[33] Infinispan System: http://infinispan.org/

[34] R. Baeza-Yates and B. Ribeiro-Neto, “Modern information retrieval,”
New York: ACM press, 1999.

[35] GanttProject System: http://www.ganttproject.biz

[36] A. Egyed, F. Graf, and P. Grunbacher, “Effort and quality of recovering
requirements-to-code traces: Two exploratory experiments,” in 18th
IEEE International Conference on requirements engineering (RE), 2010,
pp. 221–230.

[37] G. Salton and C. Buckley, “Improving Retrieval Performance by
Relevance Feedback”, Jour. of the American Society for Information
Science, vol. 41, no.4, 1990, pp. 288-297.

[38] G. Macbeth, E. Razumiejczyk, and R. D. Ledesma, “Cliff’s delta
calculator: a non-parametric effect size program for two groups of
observations”, Univ Psychol 10(2):545–555, 2011

[39] Y. Lin, J. Sun, Y. Xue, Y. Liu, and J. Dong, “Feedback-based debugging,”
in Proceedings of the 39th International Conference on Software
Engineering(ICSE), 2017, pp. 3-14.

[40] Y. Lin, G. Meng, Y. Xue, Z. Xing, J. Sun, X. Peng, Y. Liu, W. Zhao, and
J. Dong, “Mining implicit design templates for actionable code reuse”. In
Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2017), 2017, pp. 394-404.

